Biomacromolecules, Vol.4, No.1, 166-172, 2003
Surface composition and morphology of starch, amylose, and amylopectin films
The surfaces of solution-cast films of starch, amylose, and amylopectin were examined with scanning electron microscopy (SEM), atomic force microscopy (AFM), electron spectroscopy for chemical analysis (ESCA), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface topography visualized by SEM showed that amylopectin films were very smooth whereas amylose and starch films were rougher. It appears that crystallinity or phase separation in the bulk of the film affects the surface topography. AFM showed that the outmost surfaces of all films were covered with small protrusions, 15-35 nm wide and 1-4 nm high. Studies with ESCA revealed the presence of 3-8% nitrogen on the surfaces. ToF-SIMS indicated that the nitrogen originates from protein because ionic fragments from amino acids and the peptide backbone were found. Extracts from the top surface layer of the starch film showed protein bands in gel electrophoresis (SDS-PAGE) around 60 kDa, which is in the same molecular weight range as the biosynthesizing enzyme GBSS I present in starch granules. The proteins apparently phase separated during film formation and migrated to the surface, resulting in an extensive enrichment of proteins in the film surface, where about 8% of the protein is present in the top 0.01% of the film. We believe that the protrusions observed with AFM could be one or a few proteins aggregated side by side.