Biomacromolecules, Vol.7, No.2, 565-571, 2006
Aggregation of antifreeze glycoprotein fraction 8 and its effect on antifreeze activity
Antifreeze glycoproteins (AFGPs) have many potential applications ranging from the cryopreservation and hypothermic storage of tissues and organs to the preservation of various frozen food products. Since supplying native AFGP for these applications is a labor-intensive and costly process, the rational design and synthesis of functional AFGP analogues is a very attractive alternative. While structure-function studies have implicated specific structural motifs as essential for antifreeze activity in AFGP, the relationship between solution conformation and antifreeze activity is poorly understood. Toward this end, we have analyzed AFGP8 in aqueous solutions using dynamic light scattering (DLS) and circular dichroism (CD). Our results indicate that AFGP8 forms discrete aggregates in solution. These aggregates are predominantly composed of dimers that form at solution concentrations greater than 20 mM. CD spectroscopy indicates that the preferred solution conformation of AFGP8 is consistent with that of random coil. However, significant beta-sheet and alpha-helix character is observed in more concentrated solutions, indicating that these glycopeptides are highly flexible in solution. Aggregation appears to have a minimal effect on the overall solution conformation. Thermal hysteresis (TH) activity of the aggregated solutions is much higher than that of less concentrated solutions that do not form aggregates. While cooperative functioning between lower and higher molecular weight AFGPs has been reported, this is the first instance where cooperative functioning in lower molecular weight AFGPs has been observed.