Biomacromolecules, Vol.7, No.9, 2600-2609, 2006
Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior
Hydrophilic, partially degradable, and bioactive cements (HDBCs) are starch-containing cements intended to degrade partially in the human body and, in so doing, allow for bone ingrowth inside the pores formed during degradation. Therefore, the study of degradation and bioactivity behavior was performed to assess the suitability of the current HDBCs formulations to achieve those aims. The degradation profile of HDBCs was studied under different conditions, including incubation in phosphate-buffered saline (PBS) and PBS supplemented with R-amylase at different concentrations. Thermostable alpha-amylase was also added to some formulations to allow control of the degradation rate and its extent. In a second stage the simultaneous phenomena of enzymatic degradation and bioactivity ( both in vitro) was studied. We observed that the degradation of starch present in HDBCs can be easily controlled by the amount of alpha-amylase added to the cement and high values of degradation may be achieved if high enough quantities of enzyme are incorporated. However, the maximum degradation extent is much more dependent on the total amount of starch present in the formulation than on the amount of enzyme added to it: for full pore connectivity, the amount of starch should be higher than the percolation threshold for a 3D specimen. Nonetheless, calcium phosphate was able to nucleate and spread in inner pores of the cement, formed due to degradation, if they were interconnected. For a more thorough covering of the pores with calcium phosphates the amount of starch present in HDBCs should be increased to be higher than the percolation threshold.