Energy Sources Part A-recovery Utilization and Environmental Effects, Vol.28, No.8, 705-714, 2006
A phenomenological energy model of biomass pyrolysis under autothermal fluidized bed conditions
In Cuba a variety of types of biomass is being investigated for energy conversion through thermochemical processes into solid, liquid, and gas products. A continuous bench fluidized bed pyrolysis has been designed and is currently under testing. In this article, a transport model has been developed to simulate the axial temperature fields in a bench. The model and experimental results indicated that (1) two zones exist inside of the fluidization column, the dense bed where the exothermic and endothermic reactions are active, and the freeboard zone where the temperature of the pyrolysis product decreases continuously; (2) the bed temperature increases with an increase in the air factor. The predicted temperature is in quantitative agreement with experimental measurements.