Electrophoresis, Vol.22, No.1, 88-96, 2001
Molecular recognition by chiral cationic micellar and micelle-like aggregates in electrokinetic capillary chromatography
We examined the enantiomer separation with micelles and a micelle-like polymer made with trimethylammonium-terminated surfactants all of whose hydrocarbon chains contain hydrogen bonding valinediamide moieties in electrokinetic chromatography (EKC). The surfactants used were 3-(N-dodecanoyl-L-valylamino)-propyltrimethylammonium bromide (surfactant 1) and 6-(N-nonanoyl-L-valylamino)hexyl-trimethylammonium bromide (surfactant 2); the micelle-like polymer was derived from 3-(N-10-undecenoyl-L-valyl)aminopropyltrimethylammonium bromide (surfactant 3). N-Acylamino acids and their isopropyl esters were separated with enantiomers with the same configuration as the chiral surfactant and which were retained to a greater extent than the counterparts in micelles. The micellar hydrophobic environment, in which amides function as hydrogen bonding sites with solutes, and ceased micellar kinetic association-dissociation with polymerization are discussed.
Keywords:chiral separation;micelle;micelle-like polymer;micellar electrokinetic capillary chromatography