Electrophoresis, Vol.23, No.21, 3678-3682, 2002
Deviceless decoupled electrochemical detection of catecholamines in capillary electrophoresis using gold microband array electrodes
Samples containing muM concentrations of dopamine, (+/-)-isoproterenol, para-aminophenol and chlorogenic acid have been separated by capillary electrophoresis (CE) and detected using end-column amperometric detection based on a novel decoupling method. The present decoupling approach involves the use of an electrochemical detector chip containing an array of microband electrodes where the working and reference electrodes are positioned only 10 mum from each other. The short distance between the working and reference electrodes ensures that both electrodes are very similarly affected by the presence of the CE electric field. With this method, no shift in the detection potential was seen when the CE high voltage was applied. This eliminated the need for a reoptimization of the detection potential to compensate for the influence of the separation voltage on the detection. It is also demonstrated that catecholamines can be detected using gold microband electrodes by careful adjustment of the detection potential to avoid the formation of gold oxide. Such careful adjustments of the detection potential are straightforward using the present decoupling method.