Polymer(Korea), Vol.16, No.1, 61-69, January, 1992
MgCl2/2-Ethyl-1-hexanol/TiCl4-Triethylaluminum 촉매계에 의한 올레핀의 중합 : 2. 에틸렌과 프로필렌의 공중합
Olefins Polymerization with MgCl2/2-Ethyl-1-hexanol/TiCl4-Triethylaluminum Catalyst system : 2. Copolymerization fo Ethylene and Propylene
초록
염화마그네슘을 2-Ethyl-1-hexanol에 녹여 사염화티탄과 반응시켜 촉매를 제조하고 삼에틸알루미늄(TEA)를 공촉매로 하여 상압에서 에틸렌과 프로필렌의 공중합을 행하였다. 이때 중합조건 즉 중합온도, 촉매성분 농도비, 중합시간, 단량체의 공급비 등에 따른 촉매의 활성과 공중합체의 조성을 조사하였으며, 아울러 첨가제인 Lewis염기의 영향을 조사하였다. 또 촉매의 제조 조건 즉 촉매제조온도, 사염화티탄의 반응횟수 등의 영향도 조사하였다. 이 촉매계는 [TEA]/[Ti]=50과 30℃에서 최대의 활성을 나타내었으며, 공중합체내의 프로필렌 함량은 중합온도, 촉매성분 농도비, 중합시간에 대해 거의 일정하였고 단량체의 공급비에 따라서는 크게 변화하였다. Kelen-T d s방법으로 구한 단량체의 반응성비는 각각 rE=5.30, rP=0.30이었다. 촉매의 제조온도가 증가할수록, 염화마그네슘과 사염화티탄의 반응을 반복할수록 촉매의 활성과 공중합체내의 프로필렌 함량은 증가하였다. Lewis염기가 첨가되면 촉매의 활성과 공중합체내의 프로릴렌 함량은 크게 감소하였다.
The copolymerization of ethylene and propylene was carried out with catalysts prepared by treating 2-ethyl-1-hexanol solution of MgCl2 with TiC14. The changes of catalyst activity and copolymer composition were examined at different catalyst preparation conditions and polymerization conditions. The effects of Lewis base were also studied. The catalyst system showed the maximum activity at 30℃ and for [TEA]/[Ti]=50. The propylene content of copolymer was independent of polymerization temperature, mole ratio of catalyst and cocatalyst, and polymerization time. The monomer reactivity ratio was found to be rE=5.30, rP=0.30 calculated by Kelen-T d s method. By raising the temperature of catalyst prepartion and further treating the catalyst with TiC14 the catalyst activity and propylene contents of copolymer increased. The addition of Lewis base decreased the catalyst activity and propylene content of copolymer.
- Kashiwa N, Kawasaki M, Yoshitake J, "Catalytic Olefin Polymerization," ed. by T. Keii and K. Soga, Kodansha Tokyo, p. 43 (1986)
- Harkonen M, Seppala JV, Vaananen T, "Catalytic Olefin Polymerization," ed. by T. Keii and K. Soga, Kodansha, Tokyo, p. 87 (1990)
- Lee DH, Min KE, Ha KR, Jo WH, Polym.(Korea), 11(3), 278 (1987)
- Lee DH, Min KE, Jo WH, Jeong YT, Polym.(Korea), 13(1), 68 (1989)
- Lee DH, You KH, Jeong HM, Jeong YT, Polym.(Korea), 13(9), 738 (1989)
- Do JG, Jeong YT, Lee DH, Polym.(Korea), 14(3), 240 (1990)
- Jeong YT, Lee DH, Makromol. Chem., 191, 1487 (1990)
- Jeong YT, Lee DH, Soga K, Makromol. Chem. Rapid Commun., 12, 5 (1991)
- ASTM Designation: D3900-81
- Kakugo M, Miyatake T, Mizunuman K, Kawai Y, Macromolecules, 21, 2309 (1988)
- Soga K, Yanagihara H, Lee DH, Makromol. Chem., 190, 995 (1989)
- Ittel SD, Mulhaupt R, Klabunde U, J. Polym. Sci. A: Polym. Chem., 24, 3447 (1986)
- Zambelli A, Sacchi MC, Locatelli P, "Transition Metal Catalyzed Polymerization," ed. by R.P. Quirk, Harwood Academic Publishers, New York, p. 83 (1983)
- Langer AW, Burkhardt TJ, Steger JJ, "Transition Metal Catalyzed Polymerization," ed. by R.P. Quirk, Harwood Academic Publishers, New York, p. 421 (1983)
- Hu Y, Chien JCW, J. Polym. Sci. A: Polym. Chem., 26, 2003 (1988)
- Karol FJ, Carrick WL, Macromolecules, 83, 2654 (1961)
- Natta G, Mazzanti G, Volnassori A, Sartori G, J. Polym. Sci., 51, 411 (1961)
- Cozewith C, Verstrate G, Macromolecules, 4, 482 (1971)
- Soga K, Shiono T, Doi Y, Makromol. Chem., 189, 1531 (1988)
- Soga K, Shiono T, "Transition Metal Catalyzed Polymerization: Ziegler-Natta and Metathesis Polymerization," ed. by R.P. Quirk, Cambridge University Press, p. 266 (1988)
- Soga T, Shiono T, Doi Y, Polym. Bull., 10, 168 (1983)
- Spitz R, Duranel L, Masson P, Darricades-Llauro MF, Guyot A, "Transition Metal Catalyzed Polymerization: Ziegler-Natta and Metathesis Polymerization," ed. by R.P. Quirk, Cambridge University Press, p. 719 (1988)