화학공학소재연구정보센터
Electrophoresis, Vol.26, No.2, 383-390, 2005
Impact of reservoir potentials on the analyte behavior in microchip electrophoresis: Computer simulation and experimental validation for DNA fragments
Fundamental understanding of the impact of reservoir potentials on the analyte behavior on the microfluidic chips is an important issue in microchip electrophoresis (MCE) for suitable injection and separation of analytes, since the applied potentials may significantly affect the shape of sample plug, sample leakage from the injection channel to the separation channel, injected sample amount, and separation efficiency. This study addressed this issue for the case of a conventional cross-geometry microchip with four reservoirs using computer simulations, the results of which were verified by the analysis of DNA fragments. For the microchip with a definite structure and migration distance, the injected sample amount was shown to be the vital parameter for improving the limit of detection and resolution. During injection, the shape of the sample plug could be adjusted by varying the reservoir potentials. It was demonstrated that a "magnified injection" (applying high voltage on the three reservoirs to the sample reservoir) is useful to enhance the detection sensitivity depending on the analyte composition, although such injection was previously avoided because of introducing too large amounts of the analyte in comparison with two established modes, floating and pinched injection. Optimal magnified injection was proved to improve the sensitivity for about 4 times over that of pinched injection for the analysis of DNA step ladders using microchip gel electrophoresis (MCGE). Sample leakage of DNA fragments could be suppressed by applying a high positive voltage on injection channel during separation, but the voltage degraded the injected amount and resolution.