Electrophoresis, Vol.26, No.15, 3007-3012, 2005
A new fabrication process for a microchip electrophoresis device integrated with a three-electrode electrochemical detector
We report here a novel and simple process for the fabrication of a poly(methyl methacrylate) (PMMA)-based microchip electrophoresis device, integrated with a screen-printed three-electrode electrochemical detector that does not require a replicate mold. In this approach, a photoresist layer constitutes both an adhesion layer and side walls of 50 mu m wide and 50 mu m tall microfluidic channels on a screen-printed three-electrode PMMA substrate. Openings were drilled for buffer reservoirs on an additional piece of PMMA, then the final device was bonded in a PMMA/photoresist/PMMA sandwich configuration. This process is inexpensive, less time-consuming, and simpler compared with traditional fabrication methods. The combination of this PMMA-based microchip fabrication together with screen-printed electrode technology holds great promise for the mass production of a single-use micrototal analytical system. Successful determination of uric acid and L-ascorbic acid with the presented system validates its utility. In combination with a suitable electrochemical detector, this device holds much promise for the determination of other analytes in various biological samples for medical and clinical diagnosis.