Electrophoresis, Vol.26, No.24, 4759-4766, 2005
Simultaneous determination of glutathione and reactive oxygen species in individual cells by microchip electrophoresis
A microchip electrophoresis method was developed for simultaneous determination of reactive oxygen species (ROS) and reduced glutathione (GSH) in the individual erythrocyte cell. In this method, cell sampling, single-cell loading, docking, lysing, and capillary electrophoretic separation with LIF detection were integrated on a microfluidic chip with crossed channels. ROS was labeled with dihydrorhodamine 123 in the intact cell, while GSH was on-chip labeled with 2,3-naphthalene-dicarboxaldehyde, which was included in the separation medium. On-chip electrical lysis, characterized by extremely fast disruption of the cellular membrane (< 40 ms), was exploited to minimize enzymatic effects on analyte concentrations during the determination. The microfluidic network was optimized to prevent cell leaking from the sample reservoir (S) into separation during the separation phase. The structure of the S was modified to avoid blockage of its outlet by deposited cells. Detection limits of 0.5 and 6.9 amol for ROS and GSH, respectively, were achieved. The average cell throughput was 25 cells/h. The effectiveness of the method was demonstrated in the simultaneous determination of GSH and ROS in individual cells and the variations of cellular GSH and ROS contents in response to external stimuli.
Keywords:glutathione;microchip electrophoresis;miniaturization;reactive oxygen species;single-cell analysis