Electrophoresis, Vol.27, No.22, 4487-4499, 2006
High-performance CE: An effective method to study lactonization of alpha 2,8-linked oligosialic acid
A sensitive and efficient method using high-performance CE (HPCE) and neuraminidase hydrolysis was developed to study the lactonization and hydrolysis of alpha 2,8-pentasialic acid. Eleven lactone species of pentasialic acid formed in glacial acetic acid were detected and classified into three groups based on the number of carboxylic acids: monolactones with four carboxylic acids, dilactones with three carboxylic acids, and trilactones with two carboxylic acids. These lactones eluted between the original pentamer (with five carboxylic acids) and the fully lactonized species (with one carboxylic acid) in HPCE. Eight of the isomers were identified by hydrolysis with neuraminodase. Results obtained from previous reports and from this study together reveal a general rule for predicting the subtle difference in the acidity of each carboxylic acid in oligosialic acids: the closer the carboxylic acid is to the nonreducing end, the more acidic it is. Therefore, the elution order of lactone isomers having the same number of carboxylic groups can be predicted from the position of the free carboxylic groups in pentasialic acid. We used this principle and the results of hydrolysis with neuraminidase to identify hexamer lactone isomers separated by HPCE.