화학공학소재연구정보센터
Electrophoresis, Vol.28, No.14, 2466-2473, 2007
Fabrication and performance of fiber electrophoresis microchips
A method based on the in situ polymerization of methyl methacrylate (MMA) has :been developed for the rapid fabrication of a novel separation platform, fiber electrophoresis microchip. To demonstrate the concept, prepolymerized MMA molding solution containing a UV initiator was sandwiched between a poly(methyl methacrylate) (PMMA) cover plate and a PMMA base plate bearing glycerol-permeated fiberglass bundles and was exposed to UV light. During the UV-initiated polymerization, the fiberglass bundles were embedded in the PMMA substrate to form fiberglass-packed microchannels. When the glycerol in the fiberglass bundles was flushed away with water, the obtained porous fiberglass-packed channels could be employed to perform electrophoresis separation. Scanning electron micrographs (SEMs) and microscopic images offered insights into the fiber electrophoresis microchip. The analytical performance of the novel microchip has been demonstrated by separating and detecting dopamine and catechol in connection with end-column amperometric detection. The fiber-based microchips can be fabricated by the new approach without the need for complicated and expensive lithography-based microfabrication techniques, indicating great promise for the low-cost production of microchips, and should find a wide range of applications.