화학공학소재연구정보센터
Advanced Functional Materials, Vol.15, No.9, 1471-1477, 2005
ZnSe-Si bi-coaxial nanowire heterostructures
We report on the fabrication, structural characterization, and luminescence properties od ZnSe/Si bi-coaxial nanowire hetero-structures. Uniform ZnSe/Si bi-coaxial nanowire heterostructures are grown on silicon substrate by simple one-step thermal evaporeation od ZnSe powder in the presence of hydrogen. Both ZnSe and silicon are single-crystalline in the bi-coaxial nanowire heterostructures, and there is a sharp interface along the nanowire axial direction. Furthermore, secondary nanostructures of either ZnSe nanobrushes od a SiOx sheath are also grown on the primary bi-coaxial nanowires are formed via a co-growth mechanism, that is, ZnSe terminates specific surfaces of silicon and leads to anisotropic, one-dimension silicon growth, which simultaneously serves as preferential nucleation sites for ZnSe, resulting in the bi-coaxial nanowire heterostructures. In addition, the optical properties od ZnSe/Si nanowires are investigated using low-temperature photoluminescence spectroscopy.