Journal of Applied Microbiology, Vol.96, No.4, 700-708, 2004
Adhesive properties of a LamB-like outer-membrane protein and its contribution to Aeromonas veronii adhesion
Aims: To identify and characterize nonfimbrial proteins from Aeromonas veronii involved in the attachment to epithelial cells in vitro. Methods and Results: Two Aer. veronii mucin- and lactoferrin-binding proteins with molecular masses of 37 and 48 kDa were identified by Western blot analysis. According to its N-terminal amino acid sequence, the 48-kDa protein was identified as Omp48, an outer-membrane protein similar to LamB of Escherichia coli. LamB is a well-known porin involved in maltose transport across the outer membrane in E. coli. In a microtitre plate assay, Omp48 bound to the immobilized extracellular matrix proteins collagen and fibronectin, and the mucin- and lactoferrin-binding activity was confirmed. Adhesion of Omp48 to mucin, lactoferrin and collagen was diminished by preincubation with homologous glycoproteins or other carbohydrates, suggesting a putative Omp48 lectin-like binding domain. Anti-Omp48 antiserum significantly inhibited the Aer. veronii adhesion to confluent HeLa cell monolayers and pretreatment of cells with purified Omp48 elicited competitive inhibition of adhesion. Similarly, cross-inhibition of Aer. hydrophila and Aer. caviae adhesion was achieved with the same treatments, indicating the existence of a conserved surface protein among these species. Conclusions: Taken together, these data indicate that Omp48 is involved in Aer. veronii adhesion to epithelial cells and might be an alternative adhesion factor of this micro-organism. Significance and Impact of the Study: The adhesive potential of Aeromonas spp. is correlated with pathogenicity; however, the adhesion mechanism is complex and not well understood. This study provides evidence of a putative adhesion factor that might be contributing to pathogenicity of Aer. veronii and could be used for vaccine development.