Journal of Applied Microbiology, Vol.96, No.4, 810-818, 2004
An Aneurinibacillus sp strain AM-1 produces a proline-specific aminopeptidase useful for collagen degradation
Aims: We have been for a species of thermophilic bacteria that can effectively decompose collagen and collagen peptides that tend to be hard-to-degrade proteins because of their high content of proline residues. This study focused upon the enzymatic degradation of prolyl peptides by thermophilic bacteria. Methods and Results: A strain, AM-1, producing a proline-specific aminopeptidase was isolated using a medium containing gelatin that was taken from soil samples collected at Arima Hot Spring located near Kobe, Japan. The strain showed the strongest level of hydrolysing activity toward prolyl-p-nitroanilide, and the activity proved to be thermostable. Phylogenetic analysis based on 16S rDNA sequences revealed that the isolated strain AM-1 was closest to Aneurinibacillus thermoaerophilus DSM10154(T) in its characteristics. Analysis of the purified proline-specific aminopeptidase suggested that the enzyme is an aminopeptidase containing metal that includes important disulphide bond(s). The strain AM-1 aminopeptidase has more similarities with leucyl aminopeptidases, but its activity level differs greatly with prolyl peptides. Conclusions: The proline-specific aminopeptidase from strain AM-1 is the first from the genus Aneurinibacillus and may be a new type of aminopeptidase for hydrolysing prolyl peptide. This enzyme also contributed to the degradation of collagen when used in combination with another collagenolytic protease. Significance and Impact of the Study: The proline-specific aminopeptidase obtained from strain AM-1 may be used in the treatment of wastewater containing collagen that is encountered in the meat industries, and for decreasing bitter peptides in milk products.