Journal of Applied Microbiology, Vol.98, No.2, 293-298, 2005
Aerial release of bacteria from cot mattress materials and the sudden infant death syndrome
Aim: To investigate aerial release of bacteria from used cot mattresses and to assess factors that may influence this process. Methods and Results: Movement on used mattresses, simulating that of an infant's head, significantly enhanced aerial release of naturally acquired bacteria from the polyurethane foams (total count data, P = 0.008; Staphylococcus aureus, P = 0.004) or from polyvinyl chloride covers (total count data, P = 0.001). Aerial release of naturally acquired bacteria from used cot mattresses showed high variability and was poorly correlated (R-2 less than or equal to 0.294) with bacterial cell density within the materials. In experiments involving inoculation of S. aureus and Escherichia coli onto the polyurethane of unused cot mattresses, aerial release of the species correlated well (R-2 greater than or equal to 0.950) with inoculation density when simulated infant head movement was applied. Aerial release of these bacterial species from the material decreased with increase in width or aqueous content of the material, and was lower from polyurethane foam of a used cot mattress. Conclusions: Simulated infant movement and mattress related factors influence aerial release of bacteria from cot mattress materials. With simulated infant movement on cot mattress polyurethane foam, levels of airborne bacteria above the material are proportional to bacterial population levels inoculated onto the material. Significance and Impact of the Study: Cot mattresses harbouring relatively high levels of naturally acquired toxigenic bacteria, such as S. aureus, could pose a relatively high risk of infection to the infant's respiratory tract through increased aerial contamination. This has impact in the context of recent findings on cot mattress related risk factors for sudden infant death syndrome.
Keywords:cot death;cot mattress;Escherichia coli;polyurethane;sudden infant death syndrome;Staphylococcus aureus