화학공학소재연구정보센터
Journal of Applied Microbiology, Vol.98, No.2, 418-428, 2005
High level expression of a recombinant acid phytase gene in Pichia pastoris
Aims: To achieve high phytase yield with improved enzymatic activity in Pichia pastoris. Methods and Results: The 1347-bp phytase gene of Aspergillus niger SK-57 was synthesized using a successive polymerase chain reaction and was altered by deleting intronic sequences, optimizing codon usage and replacing its original signal sequence with a synthetic signal peptide (designated MF4I) that is a codon-modified Saccharomyces cerevisiae mating factor alpha-prepro-leader sequence. The gene constructs containing wild type or modified phytase gene coding sequences under the control of the highly-inducible alcohol oxidase gene promoter with the MF4I- or wild type alpha-signal sequence were used to transform Pichia pastoris. The P. pastoris strain that expressed the modified phytase gene (phyA-sh) with MF4I sequence produced 6.1 g purified phytase per litre of culture fluid, with the phytase activity of 865 U ml(-1). The expressed phytase varied in size (64, 67, 87, 110 and 120 kDa), but could be deglycosylated to produce a homogeneous 64 kDa protein. The recombinant phytase had two pH optima (pH 2.5 and pH 5.5) and an optimum temperature of 60degreesC. Conclusions: The P. pastoris strain with the genetically engineered phytase gene produced 6.1 g l(-1) of phytase or 865 U ml(-1) phytase activity, a 14.5-fold increase compared with the P. pastoris strain with the wild type phytase gene. Significance and Impact of the Study: The P. pastoris strain expressing the modified phytase gene with the MF4I signal peptide showed great potential as a commercial phytase production system.