- Previous Article
- Next Article
- Table of Contents
Energy, Vol.22, No.11, 1019-1027, 1997
Thermochemical conversion of coal and water to CO and H-2 by a two-step redox cycle of ferrite
Redox systems of iron-based oxides (ferrites) mixed with coal powder have been studied to determine the most reactive and selective working materials for thermochemical conversion of coal and water to CO and H-2. Reactions were performed in a two-step redox cycle in which the ferrites were reacted with coal powder at 900 degrees C to produce CO, H-2, and reduced ferrites (coal-gasification step); these were then reoxidized with water vapor to generate H-2 at 700 degrees C in a separate step (water-decomposition step). Magnetite and Mg(II)-, Mn(II)-, Ni(II)-, Zn(II)-, and In(III)-ferrites have been screened for reactivity and selectivity in the coal-gasification step. The In(III)-ferrite showed the greatest reactivity and selectivity for CO formation from coal at 900 degrees C. The CO-production rate in the coal-In(III)-ferrite reaction was 3.5 times as fast as that in the single-step direct coal-H2O reaction. The metallic phase of alpha-Fe and In, produced by the coal-In(III)-ferrite reaction, was reoxidized to the ferrite phase to generate I-I, in the water-decomposition step at 700 degrees C. The amount of H-2 evolved using In(III)-ferrite was 5 times larger than that using magnetite. The processes were repeated in the temperature range 700-900 degrees C, with the highly efficient net reaction CHtau(coal) + H2O --> CO + (tau/2 + 1)H-2.