화학공학소재연구정보센터
Solid-State Electronics, Vol.46, No.12, 2191-2198, 2002
A simple efficient model of parasitic capacitances of deep-submicron LDD MOSFETs
Estimation of parasitic capacitances in a MOSFET device is very important, notably in mixed circuit simulation. For deep-submicron LDD MOSFETs, the extrinsic capacitance (overlap plus fringing capacitances) is a growing fraction of the total gate capacitance. A correct estimation of the extrinsic capacitance requires an accurate modeling of each of its constituents. However the major existing models do not correctly predict the overlap capacitance and the inner fringing capacitance (which is often ignored). In this paper a new approach to model the overlap C-ov and fringing C-if + C-of capacitances in the zero-current regime is presented. The bias dependence of the extrinsic capacitance is investigated and a detailed study of the influence of the LDD doping dose is also undertaken. Then, an efficient, simple and continuous model describing the evolution of overlap and fringing capacitances in all operating regimes of a n-channel LDD MOSFET is developed. Finally this model is incorporated in an existing compact-model for circuit simulation. It is shown that this new model leads to excellent results in comparison with full 2D numerical device simulation. (C) 2002 Elsevier Science Ltd. All rights reserved.