화학공학소재연구정보센터
Polymer(Korea), Vol.17, No.4, 372-378, July, 1993
PVA계 감광성 수용성 고분자의 합성 및 Lipid 센서에의 응용
Synthesis of PVA Type Photosensitive Water Soluble Polymer and Application to Lipid Sensor
초록
Lithography공정을 이용한 바이오 센서 감지막 형성을 위하여 수용성 고분자인 polyvinyl alcohol(PVA)에 감광성기인 4-l2-[(4-formylphenyl) ethenyl]pyridinium methosulfate(SbQ)염을 결합시켜 수용성 감광성 고분자(PVA/SbQ)를 얻었다. PVA/SbQ치환율을 사외선(UV) 흡광법으로 정량하였으며, PVA/SbQ 수용액 농도 및 SbQ 치환율에 따른 박막의 두께에의 영향 및 가교 반응 특성을 조사하였다. PVA/SbQ 수용액(SbQ 1 mole%, 농도 10wt%)) 자체의 막형성 실험으로부터 스핀 코터의 회전수는 2.500∼3,000rpm. 진공 전조는 상온에서 30분, UV 조사시간은 20∼30초. 증류수에서의 현상시간은 30초가 적정 조건임을 알았다. 상기 PVA/SbQ수용액 200μL에 BSA 7.5mg lipase 10mg을 포함하는 현탁액을 사용하여 Si3N4 박막형 pH-ISFET의 gate 부위에 감지막을 형성하였으며 이 lipid 센서는 triacetin에 대하여 10∼100mM 농도 범위에서 출력 전압이 직선성의 검정선을 나타내었다.
For the biosensor membrane formation utilizing photolithography method, polyviny alcohol(PVA) was combined with 4-[2-(4-formylphenyl) etheny]pyridinium methosulfate(SbQ) through acetal linkage to give photosensitive water soluble pollymer PVA/SbQ. The degree of substitution of SbQ group in PVA was determined by ultraviolet (UV) spectrophotometry. The effect of concentration of PVA/SbQ in water and degree of substitution of SbQ on the ??? of film and other photolithographic properties were examined. From the film formation study on silicon chip using PVA/SbQ(SbQ 1mole%, 10 wt% ) aqueous solution, the spin coating speed at 2,500∼3,000 rpm, vacuum drying time of 30 min at room temperature, UV irradiation time of 20∼30sec, developing time of 30sec in distilled water were found to be optimum condition. Lipid sensor membrane was prepared on the gate area of pH-ISFET coated with Si3N 4 thin flim by photolithographic method using aqueous suspension of 7.5mg of BSA and 10 mg of lipase in 200 μL of above PVA/SbQ solution. This lipid sensor exhibited a linear calibration curve in the 10∼100mM range of triacetin as a lipid samole.
  1. Rechnitz GA, Chem. Eng. News, 24(5) (1988)
  2. Moss S, Janata J, Anal. Chem., 47, 2238 (1975) 
  3. Turner APF, Karube I, Wilson GS, "Biosensors, Fundamentals and Applications," Oxford Science, New York, p. 471 (1986)
  4. Nakako M, Hanazato Y, Maeda M, Shiono S, Anal. Chim. Acta, 185, 179 (1986) 
  5. Gotoh M, Tamiya E, Karube I, Sens. Mater., 1, 25 (1988)
  6. Harrison DJ, Teclemariam A, Cunningham L, Anal. Chem., 61, 246 (1989) 
  7. Hanazato Y, Nakako M, Shiono S, IEEE Trans. Electron Devices, ED33(1), 47 (1986)
  8. Higashi Y, J. Polym. Sci. A: Polym. Chem., 18, 613 (1980)
  9. Ichimura K, Watanabe S, J. Polym. Sci. A: Polym. Chem., 18, 891 (1980)
  10. Ichimura K, J. Polym. Sci. A: Polym. Chem., 20, 1411 (1982)
  11. Ichimura K, Watanabe S, J. Polym. Sci. A: Polym. Chem., 20, 1419 (1982)
  12. Ichimura K, J. Polym. Sci. A: Polym. Chem., 22, 2817 (1984)
  13. Ichimura K, Watanabe S, Japan Kokai, 55-62446 (1980)
  14. Ichimura K, U.S. Patent, 4,269,941 (1981)
  15. 손병기, 대한 전자 공학회지, 18권 5호, 22-29 (1981)
  16. Ichimura K, 高分子, 33, 443 (1984)