화학공학소재연구정보센터
Solid-State Electronics, Vol.49, No.12, 1956-1960, 2005
Efficient white organic light-emitting device based on a thin layer of hole-transporting host with rubrene dopant
A white organic light-emitting device (WOLED) in which a yellow fluorescent dye, rubrene (5,6,11,12-tetraphenylnaphthacene), is doped into a thin layer of traditional hole-transporting material NPB 14,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl) is fabricated. The device has a simple structure of indium tin oxide (ITO)/CuPc/NPB/NPB: 0.7 wt.% rubrene/TPBI/lithium fluoride (LiF)/Al, where CuPc (copper phthalocyanine) and TPBI {2,2',2"-(1,3,5-benzenetriyl)tris[1-phenyl-1H-benzimidazole]} are used as the hole-injecting layer and electron-transporting and hole-blocking layer, respectively. The device exhibits peak efficiency of 3.7 cd/A (2.1 lm/W) at 5.5 V and maximum brightness of 8200 cd/m(2) at 20 V. The Commission Internationale de I'Eclairage (CIE) coordinates of (0.291, 0.303) are determined at 6 V. When the bias increased from 6 V to 14 V, the colour coordinates shifted only by similar to 2%, which is presumably related closely to the thickness of the doped NPB layer. Besides, the electroluminescent (EL) efficiency can also be improved by decreasing the thickness of the doped NPB layer. The mechanisms of generating stable white colour and improving EL performances are also discussed. (C) 2005 Elsevier Ltd. All rights reserved.