화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.24, No.6, 1089-1094, November, 2007
Size-controlled electrochemical synthesis of palladium nanoparticles using morpholinium ionic liquid
E-mail:
We have successfully synthesized morpholinium ionic liquid-stabilized palladium (Pd) nanoparticles by electrochemical reduction. For characterization of Pd nanoparticles, FT-IR, UV-visible spectroscopy, and Transmission electron microscopy (TEM) were employed. The FT-IR spectrum of Pd nanoparticles indicated the surface binding of the IL to the nanoparticles. The UV-visible spectrum showed that nano-sized Pd particles were produced. The particle size was controlled by the adjustment of the current density, temperature, and electrolysis duration. The TEM images showed an average size of 2.0, 2.2, 2.4, 2.9, 3.5, 3.9, and 4.5 nm. Nearly a 0.5 nm-sized control of the nanoparticle was achieved. The particle size increased with a decrease in the current density and an increase in temperature and electrolysis duration. The electron diffraction patterns of resulting nanoparticles indicated that the particles had a crystalline structure.
  1. Cao G, in Nanostructures and nanomaterials, ICP, London (2004)
  2. Rao CNR, Muller A, Cheetham AK, in The chemisty of nanomaterials, WILEY-VCH, Weinheim (2004)
  3. Reetz MT, Helbig W, J. Am. Chem. Soc., 116(16), 7401 (1994)
  4. Reetz MT, Winter M, Breinbauer R, Thurn-Albrecht T, Vogel W, Chem. Eur. J., 7, 1084 (2001)
  5. The electrochemical window of tetrabutylammonium bromide ranged from .2.0 to 0.5 V vs. Ag/Ag+
  6. Kim KS, Choi S, Demberelnyamba D, Lee H, Oh J, Lee BB, Mun SJ, Chem. Commun., 828 (2004)
  7. Kim KS, Park SY, Yeon SH, Lee H, Electrochim. Acta, 50(28), 5673 (2005)
  8. Yeon SH, Kim KS, Choi S, Lee H, Kim HS, Kim H, Electrochim. Acta, 50(27), 5399 (2005)
  9. Yeon SH, Kim KS, Choi S, Cha JH, Lee H, J. Phys. Chem. B, 109(38), 17928 (2005)
  10. Kim KS, Shin BK, Lee H, Ziegler F, Fluid Phase Equilib., 218(2), 215 (2004)
  11. Welton T, Chem. Rev., 99(8), 2071 (1999)
  12. Marsh KN, Deev A, Wu ACT, Tran E, Klamt A, Korean J. Chem. Eng., 19(3), 357 (2002)
  13. Tsukada Y, Iwamoto K, Furutani H, Matsushita Y, Abe Y, Matsumoto K, Monda K, Hayase S, Kawatsura M, Itoh T, Tetrahedron Lett., 47, 1801 (2006)
  14. Kim KS, Park SY, Choi S, Lee H, J. Power Sources, 155(2), 385 (2006)
  15. Choi S, Kim KS, Lee H, Oh JS, Lee BB, Korean J. Chem. Eng., 22(2), 281 (2005)
  16. Cha JH, Kim KS, Choi S, Yeon SH, Lee H, Kim HS, Kim H, Korean J. Chem. Eng., 22(6), 945 (2005)
  17. Kim KS, Demberelnyamba D, Shin BK, Yeon SH, Choi S, Cha JH, Lee H, Lee CS, Shim JJ, Korean J. Chem. Eng., 23(1), 113 (2006)
  18. Seddon KR, Stark A, Torres MJ, Pure Appl. Chem., 72, 2275 (2000)
  19. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR, J. Am. Chem. Soc., 124(16), 4228 (2002)
  20. Huang J, Jiang T, Han B, Gao H, Chang Y, Zhao G, Wu W, Chem. Commun., 1654 (2003)
  21. Zhu YJ, Wang WW, Qi RJ, Hu XL, Angew. Chem.-Int. Edit., 43, 1410 (2004)
  22. Kim KS, Choi S, Cha JH, Yeon SH, Lee H, J. Mater. Chem., 16, 1315 (2006)
  23. Kim KS, Demberelnyamba D, Lee H, Langmuir, 20(3), 556 (2004)
  24. Kim KS, Demberelnyamba ND, Yeon SW, Choi S, Cha JH, Lee H, Korean J. Chem. Eng., 22(5), 717 (2005)
  25. Bonnemann H, Richards RM, Eur. J. Inorg. Chem., 2455 (2001)
  26. The electrochemical window of [Mor1,4][BF4] ranged from .2.6 to 3.8 V vs. Ag/Ag+
  27. In the IR spectrum, the absence of O-H band indicates that C-H aliphatic vibrations at near 2,950 cm.1 originate from IL and ethanol employed to purified the nanoparticles is totally removed
  28. Creighton JA, Eadon DS, J. Chem. Soc.-Faraday Trans., 87, 3881 (1991)