Polymer(Korea), Vol.31, No.6, 532-537, November, 2007
PVA/DMSO 용액계의 유변학적 특성에 미치는 PVA의 분자량분포의 영향
The Effects of Molecular Weight Distribution on the Rheological Behavior of PVA/DMSO Solution Systems
E-mail:
초록
본 연구에서는 poly(vinyl alcohol)(PVA)를 dimethyl sulfoxide(DMSO)에 녹여 이 용액의 유변학적 특성에 미치는 PVA의 분자량분포의 영향에 관하여 고찰하였다. 동일 평균분자량인 경우에도 수지 혼합(resin blending)에 의해 분자량분포가 넓어지면 점도와 손실탄성률이 더 낮아짐을 알 수 있었다. 이것은 동일 평균 분자량의 경우 분자량분포가 넓은 PVA/DMSO 용액계의 자유체적이 증가되기 때문이라고 생각된다. 분자량 분포가 저장탄성률에 미치는 영향은, 14 wt% 용액의 경우에는, 1.3 rad/sec보다 낮은 진동수 영역에서는 동일 평균분자량의 경우 분자량분포가 넓은 PVA/DMSO 용액계가 탄성이 더 크고, 1.3 rad/sec보다 높은 진동수 영역에서는 분자량분포가 좁은 PVA/DMSO 용액계가 탄성이 더 크게 측정되었다. 14 wt% 용액의 경우에 Modified Cole-Cole plot에서의 기울기는 분자량분포가 넓어지면 진동수에 따른 상전이 현상이 더 뚜렷해졌다.
The rheological properties of the solutions of atactic poly(vinyl alcohol)(PVA) in dimethyl sulfoxide (DMSO) were investigated in terms of molecular weight distribution (MWD) of the polymer. The dynamic viscosity (η′) and loss modulus (G″) for the PVA/DMSO solutions with broader MWD were lower than those with narrower MWD at the similar Mw. It could be explained by the fact that the free volume for the solution with broader MWD at the similar Mw was increased. The storage modulus (G″) of 14 wt% PVA/DMSO solutions with broader MWD was higher than that with narrower MWD at a lower frequency than 1.3 rad/sec, but lower than that with narrower MWD at a higher frequency (>1.3 rad/sec). The slopes of modified Cole-Cole plots of the 14 wt% solutions showed that as the MWD was broadened, the phase transition with frequency was more noticeable.
- Sakurada I, Polyvinyl Alcohol Fibers, M. Lewin, Editor, Marcel Dekker, New York, pp. 3 (1985)
- Toyoshima K, Polyvinyl Alcohol, C. A. Finch, Editor, John Wiley and Sons, New York, pp. 208 (1973)
- Matsuzawa S, Yamaura K, Maeda R, Ogasawara K, Makromol. Chem., 180, 229 (1979)
- Ha WS, Lyoo WS, U. S. Pat. 6,124,033 (2000)
- Ha WS, Lyoo WS, KR Pat. 1996-0011601 (1996)
- Masuda M, Polyvinyl Alcohol-Developments, C. A. Finch, Editor, John Wiley and Sons, N.Y., pp. 404-431 (1991)
- Luzar A, Chandler D, J. Chem. Phys., 98, 8160 (1993)
- Hyon SH, Cha WI, Ikada Y, Polym. Bull., 22, 119 (1989)
- Watase M, Nishinari K, Polym. J., 21, 567 (1989)
- Yamaura K, Itoh M, Tanigami T, Matsuzawa S, J. Appl. Polym. Sci., 37, 2709 (1989)
- Fujiwara H, Shibayama M, Chen JH, Nomura S, J. Appl. Polym. Sci., 37, 1403 (1989)
- Seoul C, Mah SI, Polymer, 38(22), 5551 (1997)
- Guillet JE, Combs RL, Slonaker DF, Weems DA, Coover HW, J. Appl. Polym. Sci., 9, 757 (1965)
- Ramey KC, Field ND, Polym. Lett., 3, 63 (1965)
- Ramey KC, Field ND, Polym. Lett., 3, 69 (1965)
- Bovey FA, Jelinski LW, Chain structure and conformation of macromolecules, Academic Press, New York, pp. 61 (1982)
- Middleman S, J. Appl. Polym. Sci., Vol.Ⅱ, 417 (1967)
- Middleman S, The flow of high polymers, Interscience, New York, pp. 154 (1968)
- Adamse JWC, Janeschitz-Kriegl H, Denotter JL, Wales JLS, J. Polym. Sci. A: Polym. Chem., 6, 871 (1968)
- Combs RL, Slonaker DF, Coover HW, J. Appl. Polym. Sci., 13, 519 (1969)
- Han CD, Yu TC, Kim KU, J. Appl. Polym. Sci., 15, 1149 (1971)
- Guillet JE, Combs RL, Slonaker DF, Weems DA, Coover HW, J. Appl. Polym. Sci., 9, 767 (1965)
- Ferry JD, Williams ML, Stern DM, J. Chem. Phys., 58, 987 (1954)
- Lyoo WS, Kim BC, Ha WS, Polym. J., 30, 424 (1998)
- Aoki H, White JL, Fellers JF, J. Appl. Polym. Sci., 23, 2293 (1979)
- Ottenbrite RM, Utracki LR, Inoue S, Current Topics in Polymer Science, Hanser Publishers, Munich, VolⅡ, pp.181-196 (1987)
- Ottenbrite RM, Utracki LR, Inoue S, Current Topics in Polymer Science, Hanser Publishers, Munich, Vol Ⅱ, pp.149-165 (1987)
- Han CD, Jhon MS, J. Appl. Polym. Sci., 32, 3809 (1986)
- Han CD, Kim J, Kim JK, Macromolecules, 22, 283 (1989)
- Han CD, Kim JK, Polymer, 34, 2533 (1993)
- Wissburn KF, Griffin AC, J. Polym. Sci. B: Polym. Phys., 20, 1835 (1982)