Macromolecular Research, Vol.15, No.7, 671-675, December, 2007
Effect of Maleylation on Physicochemical Properties of Soybean Glycinin
E-mail:
Soybean proteins appear to harbor a great deal of potential as functional ingredients due to the fact that they are composed of highly bioavailable peptides and amino acids. To develop drink- or gel-type foods formulated with soybean protein, the physicochemical properties of intact and chemically modified soy glycinin were assessed. Maleylation to soy glycinin altered the surface charges of glycinin via the modification of lysine residues, and subsequently generated the dissociation of glycinin subunits owing to the increase in charge repulsion. This modification thus improved the solubility of glycinin, particularly under acidic pH conditions. It is worthy of note that maleylation increased the susceptibility of the basic subunits of mTGase and the formation of a substantial quantity of molecules at a low protein solution concentration. The results of dynamic rheological studies indicated that the 5% intact glycinin progressively formed the gel with mTGase treatment in a concentration-dependent manner, but maleylated-glycinin did not.
- Wolf WJ, Sly DA, Cereal Chem., 44, 653 (1987)
- Briggs DR, Wolf WJ, Arch. Biochem. Biophys., 72, 127 (1957)
- Samoto M, Kawamura Y, The Food Industry, 39, 76 (1996)
- Makino S, Nakashima H, Minami K, Moriyama R, Takao S, Agric. Biol. Chem., 52, 803 (1988)
- Hettiarachchy N, Kalapathy U, in Soybeans: Chemistry, Technology and Utilization, L. Keshun, Ed., Chanpman & Hall, New York, 1997, pp 379-411
- Friedman M, Brandon DL, J. Agric. Food Chem., 49, 1069 (2001)
- Boatright WL, Hetiarachchy NS, J. Food Sci., 60, 806 (1995)
- Choi YR, Lusas EW, Rhee KC, J. Food Sci., 47, 1713 (1982)
- Clark AH, Lee CD, Tuffnell, in Functional Properties of Food Macromolecules, J. R. Mitchell and D. A. Ledward, Eds., Elsevier, London, U.K., 1986, pp 203-272
- Mo X, Zhong Z, Wang D, Sun X, J. Agric. Food Chem., 54, 7589 (2006)
- Zhu Y, Bol J, Rinzema A, Tramper J, Appl. Microbiol. Biotechnol., 44(3-4), 277 (1995)
- Sakamoto H, Kumazawa Y, Toiguchi S, Seguro K, Soeda T, Motoki M, J. Food Sci., 59, 866 (1995)
- Ikura K, Sasaki R, Motoki M, Agric. Food Chem., 2, 389 (1992)
- Mizuno A, Mitsuiki M, Motoki M, J. Agric. Food Chem., 48, 3286 (2000)
- Kurth L, Rogers PJ, J. Food Sci., 49, 573 (1984)
- Kang Y, Kim HJ, Shin WS, Woo GJ, Moon TW, J. Food Sci., 58, 2215 (2003)
- Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M, Agric. Biol. Chem., 53, 2613 (1989)
- Motoki M, Seguro K, Food Sci. Technol., 9, 204 (1998)
- Shin WS, Seo HS, Woo GJ, Jeong YS, J. Korean Soc. Food Sci. Nutri., 34, 1434 (2005)
- Seo HS, Shin WS, Yoon S, Lee SJ, Food Sci. Biotechnol., 12, 1 (2003)
- Yoo JS, Shin WS, Woo GJ, Kim YS, Jeong YS, Korean J. Food Sci. Technol., 35, 260 (2003)
- Thanh VH, Okubo K, Shibasaki K, Plant Physiol., 56, 19 (1975)
- Kawai Y, Fujimura S, Takahashi K, Int. J. Food Sci. Technol., 33, 385 (1998)
- Adler-Nessen J, J. Agric. Food Chem., 27, 1256 (1979)
- Laemmli UK, Nature, 227, 680 (1970)
- Liu M, Lee DS, Damodaran S, J. Agric. Food Chem., 47, 4970 (1999)
- Creighton TE, in Protein: Structure and Molecular Peroperties, 2nd Eds., Freeman, U.S.A. (1993)
- Chanyongvorakul Y, Matsumura Y, Nonaka M, Motoki M, Mori T, J. Food Sci., 60, 483 (1995)
- Kwon DY, Kim S, Kim HYL, Kim KS, Food Sci. Biotechnol., 12, 122 (2003)