화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.13, No.7, 1208-1214, December, 2007
Preparation of Fullerene/TiO2 Composite and Its Photocatalytic Effect
E-mail:
A Fullerene/TiO2 composite photocatalyst was prepared with titanium (IV) n-butoxide (TNB) by using a MCPBA oxidation method. Since fullerene has absorptive and semiconducting properties, the fullerene/TiO2 composite revealed a sound photo-degradation activity. From the XRD data, a strong carbon peak of fullurene graphene remained and anatase and rutile peaks were observed in the X-ray diffraction patterns for the fullerene/TiO2 composite. The surface properties seen by SEM present a characterization of the texture on the fullerene/TiO2 composite and homogenous compositions in the particles for the titanium sources that were used. For the elemental identification, the EDX spectra showed the presence of C and O with strong Ti peaks. From the MALDI-TOF mass spectrum of the fullerene/TiO2 composite, the observation of the peak due to titanium trace appeared at 878.7 and 894.8 m/z. This is also consistent with the elemental compositions of C60.(TiO2)2 and C60.O(TiO2)2. From the photocatalytic results, the excellent activity of the fullerene/TiO2 composites for organic dye and UV irradiation time could be attributed to both the effects between the photocatalysis of the supported TiO2 and the absorptivity of the fullerene.
  1. Stevenson CD, Noyes JR, Reiter RC, J. Am. Chem. Soc., 122(51), 12905 (2000)
  2. Oh WC, Jung AR, Ko WB, Anal. Sci. Technol., 20(2), 124 (2007)
  3. Oh WC, Jung AR, Ko WB, Preparation and characterization of Zn-containing fullerene, Proceeding of International conference on Carbon (CARBON 2007), CD-rom, p.284, 15th-20th July 2007, Seattle, U.S.A.
  4. Sun BY, Li MX, Luo HX, Shi ZJ, Gu ZN, Electrochim. Acta, 47(21), 3545 (2002)
  5. Langa F, Cruz P, Delgado JL, Espildora E, Gomez-Escalonilla MJ, Hoz A, J. Mater. Chem., 12, 2130 (2002)
  6. Dresselhaus MS, Dresselhaus G, Eklund PC, Academic press, USA, p.587-594 (1996)
  7. Dang H, Levitus M, Garcia-Garibay MA, J. Am. Chem. Soc., 124(1), 136 (2002)
  8. Kaneko M, Okura I, Photocatalysis: Science and Technology, Kodansha & Springer, p.124 (1999)
  9. Oh WC, Chen ML, Lim CS, J. Ceram. Process. Res., 8, 119 (2007)
  10. Oh WC, Bae JS, Chen ML, Carbon Science, 7(4), 259 (2006)
  11. Oh WC, Bae JS, Chen ML, Korean Chem. Soc., 27(9), 1423 (2006)
  12. Oh WC, Bae JS, Chen ML, Ko YS, Anal. Sci. Technol., 19(5), 376 (2006)
  13. Akiyama T, Miyazaki A, Sutoh M, Ichinose I, Kunitake T, Yamada S, Colloids Surf., 169, 137 (2000)
  14. Kamat PV, Gevaert M, Vinodgopal K, J. Phys. Chem. B, 101(22), 4422 (1997)
  15. Yu K, Zhao J, Tian Y, Jiang M, Ding X, Liu Y, Zhu Y, Wang Z, Mater. Lett., 59, 3563 (2005)
  16. Oh WC, Chen ML, Carbon Science, 8(2), 108 (2007)
  17. Tsumura T, Kojitani N, Izumi I, Iwashita N, Toyoda M, Inagaki M, J. Mater. Chem., 12, 1391 (2002)
  18. Maldonado-Hodar FJ, Moreno-Castilla C, Rivera-Utrilla J, Appl. Catal. A: Gen., 203(1), 151 (2000)
  19. Burger B, Kuzmany H, Nguyen TM, Sitter H, Walter M, Martin K, Kullen K, Carbon, 36, 661 (1998)
  20. Gu Z, Zhang L, Margrave JL, Daveydov VA, Rakhmanina AV, Agafonov V, Khabashesku VN, Carbon, 43, 2989 (2005)
  21. Baibarac M, Mihut L, Preda N, Baltog I, Mevellec JY, Lefrant S, Carbon, 43, 1 (2005)
  22. Chen ML, Ko YS, Oh WC, Carbon Science, 8(1), 6 (2007)
  23. Oh WC, Han SB, Bae JS, Anal. Sci. Technol., 20(4), 279 (2007)
  24. Schwarzenbach RP, Gschwend PM, Imboden DM, Environmental organic chemistry, 2nd Ed., John Wily and Sons (2002)