화학공학소재연구정보센터
Polymer(Korea), Vol.17, No.6, 687-694, November, 1993
폴리우레탄 양 아이오노머의 기본 구조 물성
Basic Structure Property Behavior of Polyurethane Cationomer
초록
Polytetramethylene adipilte glycol(PTAd), isophoron diisocyanate(IPDI) 그리고N-methyl diethanolamine(MDEA)을 사용하여 prepolymer mixing process로 polyurethane cationomer를 합성하였다. 자기유화로부터 얻어진 emulsion과 emulsion cast film의 기본 구조-물성 상관 관계를 PTAd분자량, MDEA함량, 중화도 및 쇄연장제의 관능기수에 따라 검토하였다. 입자크기는 PTAd 분자량과 중화도가 증가함에 따라 감소하였는데, 이를 각각 사슬의 유연성 증가와 친수성 증가로 설명하였다. Emulsion의 점도는 입자크기 의존성과는 반대의 경향을 보였다. Hard segment-rich상의 유리전이 온도(Tg)에 상응하는 주 전이온도 MDEA함량, 중하도 그리고 쇄연장제 관능지수가 증가함에 따라 단조증가하였으나, 분자량이 증가함에 따라 각각 상혼합의 증가(hard 함량의 감소)와 상분리의 증가(soft segment의 결정화)로 감소(Mn=1000) 후 증가하였다.(Mn=1500, 2000). MDEA함량, 중화도 및 쇄연장제 관능지수가 증가함에 따라 인장강도는 증가하였으며, 파단신율은 감소하였다.
Polyurethane(PU) cationomers were synthesized from polytetramethylene adipate glycol(PTAd) isophoron diisocyanate(IPDI), and If-methyl diethanolamine(MDEA) by a prepolymer mixing process. Basic structure-property relationships of emulsion and emulsion cast film were studied with regard to the molecular weight(Mn) of PTAd, MDEA content, degree of neutralization, and functionality of the chain extender. Particle size of dispersion decreased asymptotically with increasing Mn of PTAd and the degree of neutralization, but by a completely different mechanism, i.e., the former from increased chain flexibility viscosity showed generally the opposite tendency with particle size dependence. The major transition temperature, corresponding to the glass transition(Tg) of hard segment-rich phase monotonically increased tilth MDEA content, degree of neutralization, and with increasing functionality of chain extender. However, with increasing Mn of PTAd, Tg first decreased (Mn=1000) and then increased(Mn=1500, 2000), due respectively to the increased phase mixing(decreased hard Content) and phase separation(soft segment crystallization) Tensile strength increased and elongation at break decreased with MDEA content, degree of neutralization and functionality of chain extender.
  1. Dieterich D, Prog. Org. Coat., 9, 281 (1981) 
  2. Markusch PH, U.S. Patent, 4,408,008, Oct. 4 (1981)
  3. Lorenz O, Huck H, Angew. Makromol. Chem., 72, 115 (1978) 
  4. Tirpak RE, Markusch PH, Proc. Symp. Waterborne and High-Solid Coatings, 159 (1985)
  5. Hepburn C, "Polyurethane Elastomers," 2nd edition, Elsevier Applied Science, London (1991)
  6. Davies WD, "Additive for Water-based Coating," D.R. Karse ed., Royal Society of Chemistry, 182-209 (1990)
  7. Kim CK, Kim BK, J. Appl. Polym. Sci., 43, 2295 (1991) 
  8. Kim CK, Kim BK, Jeong HM, Colloid Polym. Sci., 269, 895 (1991) 
  9. Kim BK, Lee YM, J. Macromol. Sci.-Pure Appl. Chem., A29(12), 1207 (1992)
  10. "Polyurethane Handbook," G. Oertel ed., Carl Hanser Verlag, Munich (1985)
  11. Han CD, "Multiphase Flow in Polymer Processing," Academic Press, New York (1981)
  12. Bird RB, Stewart WE, Lightfoot EN, "Transport Phenomena," Wiley, New York (1960)
  13. Russel WB, Saville DA, Schowalter WR, "Colloidal Dispersions," Cambridge (1989)
  14. Rutger IR, Rheol. Acta, 2, 202 (1962) 
  15. Petrovic ZS, Soda-So IJ, J. Polym. Sci. B: Polym. Phys., 27, 545 (1989) 
  16. Abouzahr S, Wilkes GL, J. Appl. Polym. Sci., 29, 2695 (1984) 
  17. Hsu SL, Xiao HX, Szmant H, Frisch KC, J. Appl. Polym. Sci., 29, 2467 (1984) 
  18. Al-Salah HA, Xiao HX, Mclean JA, Frisch KC, J. Polym. Sci. A: Polym. Chem., 26, 1609 (1988)