Polymer(Korea), Vol.32, No.1, 43-48, January, 2008
하이퍼브랜치 Poly(styrene-co-DVB) 설폰화 양이온교환 수지의 합성 및 특성
Synthesis of Sulfonated Poly(styrene-co-DVB) Hyper Branched Cationic Exchange Resin and Its Properties
E-mail:
초록
본 연구는 벌크 중합을 이용하여 하이퍼브랜치 poly(styrene-co-divinylbenzene)(이하 PSD로 칭함)을 합성하고, 이를 설폰화하여 이온교환 용량이 큰 양이온교환체를 합성하였다. 또한 FT-IR, 1H-NMR, 및 GPC 분석을 통하여 하이퍼브랜치 PSD 이온교환체의 분자량 및 구조 확인을 하였다. 하이퍼브랜치 PSD의 분자량과 점도는 DVB의 양이 증가함에 따라 모두 증가하였으며, 각각 최대값이 9410 g/mol과 338 cP로 나타났다. 또한, 가교제의 양이 증가함에 따라 반응속도가 증가하였으며, PSD의 용해도는 감소하였고, DVB 농도가 0.1 mol%에서 용매 100 mL에 22 g이 용해되었다. 또한, 하이퍼브랜치 PSD 이온교환체의 함수율과 이온교환 용량은 설폰산기의 함량이 증가함에 따라 증가하였으며, 각각 최대 18.2%, 4.6 meq/g이었다. 구리 및 니켈에 대한 흡착이 40분 이내에 거의 100% 이루어 졌다.
In this study, the hyper branched poly(styrene-co-divinylbenzene) (PSD) was synthesized by bulk polymerization and the cationic exchanger with high ion exchange capacity was prepared by sulfonation. The structure of hyper branched PSD ion exchanger was investigated by FT-IR, 1H-NMR spectroscopy, and GPC analysis. The molecular weight, viscosity of hyper branched PSD increased with DVB content, which have the maximum values of 9410 g/mol and 338 cP, respectively. And the reaction rate also increased with cross-linker content. As DVB content increased, the solubility of PSD decreased having the maximum value of 22 g with 0.1 mol% DVB. The water content and ion exchange capacity of the hyper branched PSD ion exchanger increased with the amount of sulfuric group. Their maximum values were 18.2% and 4.6 meq/g, respectively. The adsorption of copper and nickel ion was completed within 40 min.
Keywords:hyper branched PSD;high functionalized sulfonation;high ion exchange capacity;metal adsorption
- Rubel AM, Stencel JM, Fuel, 76(6), 521 (1997)
- Chakrabarti A, Mizuno A, Shimizu K, Matsuoka T, Furuta S, IEEE T. Ind. Appl., 31, 500 (1994)
- Creyghton YLM, van Veldhuizen EM, Rutgers WR, Springer-Verlag Pub. Co., New York, p 205 (1993)
- Soldatov VS, Sergeev GI, Martsinkevich RV, Dock. Akad. Nauk, USSR, 28, 1009 (1984)
- Soldatov VS, Izv.-Akad.-Nauk-Arm.-SSR -Ser.-Fiz., 6, 39 (1982)
- Park JS, Nho YC, Hwang TS, Polym.(Korea), 21(4), 701 (1997)
- Kim DK, Lim JK, Kim WG, J. Korean Ind. Eng. Chem., 16(3), 342 (2005)
- Kim YH, J. Polym. Sci. A: Polym. Chem., 36(11), 1685 (1998)
- Voit B, J. Polym. Sci. A: Polym. Chem., 38(14), 2505 (2000)
- Kim DK, Lim JK, Kim WG, Haw JR, J. Korean Ind. Eng. Chem., 16(1), 93 (2005)
- Gupta B, Et AL, J. Membr. Sci., 81, 89 (1993)
- Lee BS, Lee KH, Lee DR, Park BG, Kim HY, Journal of the Korean Fiber Society, 40, 4 (2003)
- Zheng L, Xie AF, Lean JT, Macromolecules, 37(26), 9954 (2004)
- Lazarin AM, Borgo CA, Gushikem Y, Kholin YV, Anal. Chim. Acta, 477, 305 (2003)
- Szlag DC, Wolf NJ, Clean Products Processes, 1, 117 (1999)
- Seubert A, Klingenberg A, J. Chromatogr. A, 782, 149 (2003)
- Camerlynck S, Cormark PAG, Sherrindton DC, Eur. Polym. J., 42, 3286 (2006)
- Cho IH, Baek KW, Lim YM, Nho YC, Hwang TS, Polym.(Korea), 31(3), 239 (2007)