Polymer(Korea), Vol.32, No.1, 85-89, January, 2008
이온성 액체를 함유한 고분자 겔 전해질의 특성연구
Characterization of Ionic Liquid Contained Polymer Gel Electrolyte
E-mail:
초록
이온성 액체인 N-methoxymethyl-N-methylpyrrolidium bis(trifluoro-methansulfonyl)imide (MPSI)를 첨가제로 함유하는 acrylate 계열의 단량체를 다관능기형 acrylate 가교제와 함께 carbonate 용매에서 중합, 겔형의 고분자 전해질을 합성하였다. 고분자 전해질의 이온전도성은 고분자의 함량, 가교제의 종류, 이온성 액체의 함량에 따라 측정되었으며, 인장강도를 조사하여 고분자 및 이온성 액체의 함량이 기계적 물성에 미치는 영향을 파악하였다. 그 결과 성분의 최적화는 고분자 함량 15 wt%, 이온성액체 30 wt% 그리고 5 wt%의 가교제를 함유한 겔 전해액으로 달성되었고, 0.5 MPa의 기계적 물성과 0.8 mS/cm의 우수한 상온 이온 전도도를 나타내었다.
Acrylate polymer gel electrolytes containing N-methoxymethyl-N-methylpyrrolidium bis (trifluoro-methansulfonyl)imide (MPSI) as an ionic liquid were synthesized by solution polymerization in the presence of carbonate solvent. Ionic conductivity and mechanical properties of the polymer gel electrolytes were investigated by impedance analyzer and universal testing machine as a function of the amount of polymer, and ionic liquid and type of crosslinker. The maximum ionic conductivity of polymer gel electrolytes was 0.8 mS/cm at 25 ℃ with 15 wt% of polymer, 30 wt% of ionic liquid and 5 wt% of crosslinker. The mechanical analysis showed that the tensile strength of polymer gel electrolytes increased with additional polymer contents and had the maximum value of 0.5 MPa with a reasonable ionic conductivity.
Keywords:ionic liquid;polymer gel electrolyte;ionic conductivity;tensile strength;electrochemical stability
- Wright P, Br. Polym. J., 7, 319 (1975)
- Armand M, Solid State Ion., 9/10, 745 (1983)
- MacCallum J, Vincent C, Polymer Electrolyte Review-1, Elsevier Applied Science, New York (1987)
- Shibata Y, Kato T, Kado T, Shiratuchi R, Takashima W, Kaneto K, Chem. Commun., 21, 2730 (2003)
- Armand M, Ann. Rev. Mater. Sci., 16, 245 (1986)
- Wright P, MRS Bulletin, 27, 597 (2002)
- Kumar B, Scanlon L, Marsh R, Mason R, Higgins R, Baldwin R, Electrochim. Acta, 46(10-11), 1515 (2001)
- Xie D, Smid J, J. Polym. Sci. B: Polym. Lett. Ed., 22, 617 (1984)
- Hall P, Davies G, McIntyre J, Ward I, Bannister D, Le Groeq K, Polym. Commun., 27, 98 (1986)
- Payne D, Wright P, Polymer, 23, 690 (1983)
- Watanabe M, Nagano S, Senui K, Ogata N, Polym. J., 18, 809 (1986)
- Nagaoka K, Naruse H, Shinohara I, Watanabe M, J. Polym. Sci. A: Polym. Lett. Ed., 22, 659 (1984)
- Wilson D, Nicholas C, Mobbs R, Booth C, Giles J, Br. Polym. J., 22, 129 (1990)
- Xie HQ, Liu ZS, Guo JS, Polymer, 35(22), 4914 (1994)
- Bohnke O, Rousselot C, Gillet P, Truche C, J. Electrochem. Soc., 139, 1682 (1992)
- Appetecchi G, Croce F, Moyroud E, Scrosati B, J. Appl. Electrochem., 25(10), 987 (1995)
- Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
- Lan Z, Wu J, Lin J, Huang M, Yin S, Sato T, Electrochim. Acta, 52, 6673 (2007)
- Wang P, Zakeeruddin SM, Moser JE, Gratzel M, J. Phys. Chem. B, 107(48), 13280 (2003)
- Fang S, Yang L, Wei C, Peng C, Tachiabna K, Kamijima K, Electrochem. Commun., 9, 2629 (2007)
- Zheng H, Jiang K, Abe T, Ogumi Z, Carbon, 44, 203 (2006)
- Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M, J. Power Sources, 162(1), 658 (2006)
- Koura N, Etoh K, Idemoto Y, Matsumoto F, Chem. Lett., 12, 1320 (2001)
- Holzapfe M, Jost C, Novak P, Chem. Commun., 4, 2098 (2004)
- Katayama Y, Yukumoto M, Miura T, Electrochem. Solid State Lett., 5, A96 (2003)
- Sato T, Maruo T, Marukane S, Takagi K, J. Power Sources, 138(1-2), 253 (2004)
- Garcia B, Lavallee S, Perron G, Michot C, Armand M, Electrochim. Acta, 49(26), 4583 (2004)