Korean Chemical Engineering Research, Vol.46, No.1, 170-174, February, 2008
메조포러스 ZnS가 충전된 P(VDF-HPF) 고분자 전해질
P(VDF-HPF)-Based Polymer Electrolyte Filled with Mesoporous ZnS
E-mail:
초록
리튬염을 포함하는 P(VDF-HFP)계 겔 고분자에 surfactant-assisted templating process로 합성한 메조포러스 ZnS를 충전하여 다양한 ZnS 무게비를 가지는 전해질 필름을 제조하였고 겔 필름의 이온 전도도를 온도에 따라 측정하였다. 그 결과, 대체적으로 ZnS의 함량비가 증가할수록 증가하였다. 특히 20 wt%와 25 wt% ZnS를 포함하는 겔 필름은 상온에서 10-4 Scm-1의 높은 이온 전도도를 보였다. 하지만 20 wt% 이상의 함량비에서는 더 이상 이온 전도도가 증가하지 않았다. 합성된 메조포러스 ZnS와 겔 전해질 필름의 특성은 XRD(x-ray diffractometer), DSC(differential scanning calorimetry), TGA(thermogravimetric analysis), FT-IR(fourier transform-infrared spectrometer), SEM(scanning electron microscopy), TEM(transmission electron microscopy)을 이용하여 분석하였다. 이온 전도도는 교류 임피던스법에 따라서 승온하면서 측정하였다.
ZnS-polymer gel films were prepared with incorporating mesoporous ZnS synthesized by surfactantassisted templating process and poly (vinylidene fluoride)-hexafluoropropylene copolymer (P(VDF-HFP)) in order to observe the variation of ionic conductivities according to the various weight ratios between ZnS and P(VDF-HFP). Ionic conductivities for each gel electrolyte were measured with increasing temperature. As a result, ionic conductivities increased with increasing the amount of ZnS and temperature. In particular, the films with 20 and 25 wt% ZnS were found that they possessed the high ionic conductivity of approximately 10-4 Scm-1 at room temperature. However, above 20 wt% of ZnS, the enhancement of ionic conductivity was not observed. For the characterization of ZnS and the gel electrolyte, XRD (x-ray diffractometer), DSC (differential scanning calorimetry), TGA (thermogravimetric analysis), FT-IR (fourier transform-infrared spectrometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) were employed. Ionic conductivities were measured by a.c. impedance method.
- MacCallum JR, Vincent CA, Et AL, Elsevier Applied Science, 2, London (1989)
- Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
- Saito Y, Kataoka H, Capiglia C, Yamamoto H, J. Phys. Chem. B, 104(9), 2189 (2000)
- Kweon JO, You JS, Noh ST, Korean Chem. Eng. Res., 42(6), 741 (2004)
- Antonelli DM, Ying JY, Curr. Opin. Colloid Interface Sci., 1, 523 (1996)
- Behrens P, Angew. Chem. Int. Ed. Engl., 35(5), 515 (1996)
- Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellander BE, J. Power Sources, 119, 409 (2003)
- Dissanayake MAKL, Jayathilaka PARD, Bokalawela RSP, Electrochim. Acta, 50(28), 5602 (2005)
- Li ZH, Su GY, Wang XY, Gao DS, Solid State Ion., 176(23-24), 1903 (2005)
- Li J, Zhao X, Yan C, Mater. Lett., 60, 2896 (2006)
- Rana RK, Zhang LZ, Yu JC, Mastai Y, Gedanken A, Langmuir, 19(14), 5904 (2003)