화학공학소재연구정보센터
Polymer(Korea), Vol.18, No.1, 28-37, January, 1994
아크릴-디엔 공중합체의 합성과 이를 함유한 PMMA수지의 물성
Synthesis of Acrylic-Diene Block Copolymer and Physical Properties o PMMA Resin Containing Block Copolymer
초록
PMMA수지의 투명성을 유지하면서 충격강도를 향상시키기 위하여 PI-PMMA 블럭공중합체를 합성하여 강인화제로 사용하였다. 블럭공중합체의 함량 및 분자량, PI의 블럭크기에 따른 충격강도를 측정하기 위하여 음이온 중합법에 의해 4종의 PI-PMMA 블럭공중합체를 합성하였다. 또한 비교실험을 위하여 분자량이 각기 다른 4종의 PI단일중합체를 음이온중합법으로 합성하였다. GPC 분석으로부터 PI단일중합체의 분자량은 각각 2K. 4K, 6K 및 8K이었으며, PI-PMMA 블럭공중합체의 평균분자량은 55K, 65K, 73K 및 77K이고, 다분산성(Mw/Mn)은 1.2이하로 나타났다. NMR분석으로부터 블럭공중합체내 PI블럭의 분자량은 6K, 10K, 13K 및 15K이고. PI블럭의 미세 구조는 80%가 3,4부가반응으로 이루어져 있음을 알 수 있었다. 분자량이 2K인 PI단일중합체를 3wt.% 혼합한 PMMA수지판의 광투과율은 80%이하였으나, 10K의 PI블럭을 갖는 공중합체를 5wt.% 혼합한 PMMA의 경우 광투과율은 90%이상의 값을 나타냈다. 충격시험에서도 분자량이 8K인 PI단일중합체를 3wt. % 혼합한 PMMA수지판의 경우 40% 정도 향상되었으나 PI블럭의 분자량일 10K인 블럭공중합체를 5wt.% 혼합한 경우 충격강도가 250%정도 향상쾨는 결과를 얻었다.
Four kinds of PI-PMMA block copolymer and PI homopolymer with different Mw were synthesized as a compatible toughening agent by anionic living polymerization. Average molecular weight, polydispersity and microstructure of PI block were analysed with GPC and H-NMR respectively. The block copolymer and the homopolymer were mixed into PMMA resin with bulk polymerization. The impact strength measurement and haze test were carried out varying the weight percent of block copolymer and PI block length. In haze test, optical transmittance of PMMA plate containing 3 wt.% of 2K PI homopolymer was decreased to 80% level of than pure PMMA, while PMMA blended with 5 wt.% of 10K PI block copolymer showed 90% of transmittance, as compared to pure PMMA. The impact strength of PMMA containing 3 wt.% of PI homopolymer was increased about 40%, in contrast, in the case of PMMA containing 5 wt.% of 10K PI block copolymer, impact strength increased about 250%, when compared to pure PMMA.
  1. Olalli O, Robeson LM, "Polymer/Polymer Miscibility," Academic Press, NY (1979)
  2. Whitby GS, Stephens HL, Reports CR-3133 (1952)
  3. NTIS, U.S. Dep. Commer., Off. Tech. Serv., PB Rep. PB 118310 (1955)
  4. Chan LC, Gillham JK, Kinloch AJ, Am. Chem. Soc., 65, 2393 (1984)
  5. Schepers HAJ, Roest BC, Ger. Patent, DE, 2231993 (1973)
  6. Goett C, Journe J, Rev. Gen. Caouch. Plast., 53, 47 (1976)
  7. Rossi J, Gallot B, Makromol. Chem., 177, 2801 (1976) 
  8. Cohen RE, Rates FS, Gov. Rep.Annouce Index(U.S.), Report Tr-4, order No. AD-A0787731
  9. Long TE, Broske AD, Bradley DJ, J. Polym. Sci. A: Polym. Chem., 27, 4001 (1989) 
  10. Morton M, Fetters L, J. Macromol. Rev., 2, 71 (1967) 
  11. Bywater S, Adv. Polym. Sci., 4, 66 (1965)
  12. Fetters L, J. Polym. Sci. C: Polym. Lett., 26, 1 (1969)
  13. Morton M, "Aionic POlymerization, Principles and Pratice," Academic Press, Inc., NY. (1983)
  14. Noshay A, McGrath JE, "Block Copolymer Overview and Critical Survey,"
  15. Forman LE, "Polymer Chemistry of Synthetic Elastomers," (J.P. Kennedy and E. Tornqvist, eds.), Part II, pp. 552, 567-569, Wiley (Interscience), New York (1969)
  16. Forman LE, "Polymer Chemistry of Synthetic Elastomers," (J.P. Kennedy and E. Tornqvist, eds.), Part II, pp. 552, 567-569, Wiley (Interscience), New York, Academic Press, N.Y. (1977)
  17. Kraft M, Struktur und Absorpions-spektroskopie der Kunststotte, Verlag Chemie (1973)
  18. Bywater S, Worsfold DJ, Can. J. Chem., 45, 1821 (1967) 
  19. Sawyer LC, Grubb DT, "Polymer Microscopy," Chapman and Hall, NY (1983)
  20. Morton M, Fetters L, Rubber Chem. Technol., 48, 359 (1975)