화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.43, 12524-12530, 2007
Liquid water confined in carbon nanochannels at high temperatures
Structure, hydrogen bonding, electrostatics, dielectric, and dynamical properties of liquid water confined in flat graphene nanochannels are investigated by molecular dynamics simulations. A wide range of temperatures (between 20 and 360 degrees C have been considered. Molecular structure suffers substantial changes when the system is heated, with a significant loss of structure and hydrogen bonding. In such case, the interface between adsorbed and bulk-like water has a marked tendency to disappear, and the two preferential orientations of water nearby the graphite layers at room temperature are essentially merging above the boiling point. The general trend for the static dielectric constant is its reduction at high temperature states, as compared to ambient conditions. Similarly, residence times of water molecules in adsorbed and bulk-like regions are significantly influenced by temperature, as well. Finally, we observed relevant changes in water diffusion and spectroscopy along the range of temperatures analyzed.