Journal of the American Chemical Society, Vol.129, No.46, 14271-14280, 2007
Control of stripelike and hexagonal self-assembly of gold nanoparticles by the tuning of interactions between triphenylene ligands
We describe the self-assembly of gold nanoparticles (Au NPs) protected with newly synthesized discotic liquid crystalline molecules of hexaalkoxy-substituted triphenylene (TP) in mixed toluene/methanol solvent. The stripelike (i.e., 2D consisting of linear 1 D in stripe) self-assembly is realized successfully by the aid of pi-pi stacking of TP ligand on Au NPs. The smaller Au NPs with TP (AuTP) or the longer alkyl chain between TP and the gold core provide more free spaces among TP moieties. These spaces allow easy insertion of TP on adjacent AuTPs to lead an interparticle pi-pi interaction to form the stripelike arrangement. The solvent hydrophilicity can also serve as a controlled index to tune arrangement among stripelike, hexagonal close packed (hcp), or disorder. We have changed the solvent hydrophilicity by changing the ratio of methanol to toluene, which affects the balance of solution of AuTP (in toluene) and deposition (in methanol). The larger space between TPs and appropriate solvent hydrophilicity realize stripelike self-assembly caused by a strong pi-pi interaction between TPs, which was characterized by TEM, as well as fluorescence, dynamic light scattering, and H-1 NMR spectra.