Langmuir, Vol.23, No.24, 12366-12370, 2007
Guest-free self-assembly of alpha-cyclodextrins leading to channel-type nanofibrils as mesoporous framework
Guest-free alpha-cyclodextrin self-assembly (cc-CD-SA) was successfully obtained through a simple treatment such as sonication of alpha-CD in a specific solvent. From wide-angle X-ray diffraction (WAXD), it was found that the crystalline structure of alpha-CD changed upon increasing the treatment time, resulting in alpha-CD-SA in which the alpha-CDs were closely packed in the vertical direction and hexagonally aligned in the horizontal direction (what is called as "channel structure"). In particular, these structures were developed only in tetrahydrofuran (THF) as a specific solvent. In addition, it was found by inclusion experiment and field-emission scanning electron microscopy (FE-SEM) that propionic acid was able to be included into the channel of alpha-CD-SA and that alpha-CD-SA had alpha-CD bundles with a fibril-like shape, respectively. These results demonstrate that the alpha-CD-SA consists of nanofibril-like alpha-CD bundles with cylindrical nanopores open at least at one end, resulting from the dispersion of alpha-CD molecules by sonication in THF and the subsequent re-formation of strong hydrogen bonding between the alpha-CDs with the aid of THF (so-called '' slow recrystallization ''). Interestingly, it was observed from FE-SEM and nitrogen adsorption-desorption measurement that the alpha-CD-SA had a wormhole-like mesopore with inkbottle shape (average desorption pore size = ca. 25 nm). This mesoporous structure was considered to be attributed to the formation of a mesoporous framework by the disordered aggregation of the nanofibril-like alpha-CD bundles.