Langmuir, Vol.23, No.25, 12566-12576, 2007
Infrared spectroscopy and surface chemistry of beta-Ga2O3 nanoribbons
The structure and surface chemistry of crystalline beta-Ga2O3 nanoribbons (NRs), deposited in a thin layer on various metallic and dielectric substrates (mainly on Au), have been characterized using vibrational spectroscopy. The results have been analyzed with the aid of a previous ab initio theoretical model for the beta-Ga2O3 surface structure. Raman spectra and normal-incidence infrared (IR) transmission data show little if any difference from corresponding results for bulk single crystals. For a layer formed on a metallic substrate, IR reflection-absorption spectroscopy (IRRAS) shows longitudinal-optic (LO) modes that are red-shifted by similar to 37 cm(-1) relative to those of a bulk crystal. Evidence is also seen for a bonding interaction at the Ga2O3/Au interface following heating in room air. Polarization-modulated IRRAS has been used to study the adsorption of pyridine under steady-state conditions in ambient pressures as high as similar to 5 Torr. The characteristic nu(19b) and nu(8a) modes of adsorbed pyridine exhibit little or no shift from the corresponding gas-phase values. This indicates that the surface is only weakly acidic, consistent with the theoretical prediction that singly unsaturated octahedral Ga sites are the only reactive cation sites on the NR surface. However, evidence for adsorption at defect sites is seen in the form of more strongly shifted modes that saturate in intensity at low pyridine coverage. The effect of H atoms, formed by thermal cracking of H-2, has also been studied. No Ga-H or O-H bonds are observed on the pristine NR surface. This suggests that the previously reported presence of such species on Ga2O3 powders heated in H2 is a result of a partial reduction of the oxide surface. The heat of adsorption of atomic H on the pristine beta-Ga2O3(100) surface at 0 K is computed to be -1.79 eV per H at saturation (average of Ga-H and O-H sites), whereas a value of +0.45 eV per H is found for the dissociative adsorption of H2. This suggests that rapid recombinative desorption of H-2 may limit the coverage of chemisorbed H on this surface.