화학공학소재연구정보센터
Electrochimica Acta, Vol.52, No.20, 6073-6083, 2007
Placement of reference electrode in solid electrolyte cells
The placement of reference electrodes in solid state ionic conductors is not as flexible as in liquid state electrochemistry. This is in particular a problem when material from the gas phase is involved, as in solid oxide fuel cell. Many of the arrangements used are problematic: either they produce results that are very sensitive to electrode placement, change the potential distribution, do not provide a uniform current density and overpotential at the electrode or require delicate patterns liable to fail. We here present a new approach suitable for thin layer SOFC. It includes a calibration procedure derived from numerical simulations in combination with experiments. This allows the use of the common three-electrode arrangement on thin solid electrolyte (SEs) where the reference electrode is placed side by side with the working electrode, on an extension of the thin layer SE. This is so despite the sensitivity of that arrangement to both misalignment of the electrodes and to a difference in the impedance of the two current carrying electrodes. The misalignment tolerated, with the present method, may exceed the SE thickness. The allowed misalignment increases with the electrode/SE impedance ratio. The method copes also with the difference in the electrode impedance. Two special configurations are discussed in which the calibration is not required. However, these require a more accurate preparation technique of the cell. (c) 2007 Elsevier Ltd. All rights reserved.