Electrochimica Acta, Vol.52, No.24, 6741-6747, 2007
Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries
Macroporous material of Sn-Cu alloy of different pore sizes designated as anode in lithium-ion batteries were fabricated through colloidal crystal template method. The structure and electrochemical properties of the macroporous Sn-Cu alloy electrodes were examined by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and galvanostatic cycling. The results demonstrated that the electrodes of macroporous Sn-Cu alloy with pore size respectively of 180 and 500 nm can deliver reversible capacity of 350 and 270 mAh g(-1) up to 70th cycles of charge/discharge. The cycle performance of the macroporous Sn-Cu alloy of 180 nm in pore size is better than that of the macroporous Sn-Cu alloy with 500-nm-diameter pores. It has revealed that the porous structure of the macroporous Sn-Cu alloy material is of importance to strengthen mechanically the electrode and to reduce significantly the effect of volume expansion during cycling. (c) 2007 Elsevier Ltd. All rights reserved.
Keywords:electroplating;colloidal crystal template;macroporous;tin-copper alloy;lithium-ion batteries