Energy & Fuels, Vol.21, No.4, 2287-2293, 2007
Rotary-type solar reactor for solar hydrogen production with two-step water splitting process
The rotary-type solar reactor has been developed and fabricated for solar hydrogen production by a two-step water-splitting process using the reactive ceramics of CeO2 and Ni,Mn-ferrite (Ni0.5Mn0.5Fe2O4). It has a cylindrical rotor and dual cells for discharging O-2 and for the H2O splitting reaction. A detailed specification and the efficiency of the rotary-type solar reactor were examined for the two-step water-splitting process. The maximum temperature of the reactive ceramics mounted on the cylindrical rotor was ca. 1623 K by irradiation with a solar simulator of an infrared imaging lamp. Repetition of the two-step water-splitting process using the rotary-type solar reactor with CeO2 was achieved, and successive evolution of H-2 was observed in the H2O-splitting reaction cell at the optimum reaction temperatures of the O-2-releasing reaction cell (T = 1623 K) and H2O-splitting reaction cell (T = 1273 K). Also, repetition of the two-step water-splitting process was achieved in the case of using the reactive ceramics of Ni,Mn-ferrite, and its optimum reaction temperatures of the O-2-releasing and H-2-generation reactions were 1473 and 1173 K, respectively. It was confirmed that the higher O-2-releasing reaction temperature of above 1800 K was achieved with the about 10-times scaled-up rotary-type solar reactor.