화학공학소재연구정보센터
Polymer(Korea), Vol.18, No.3, 406-411, May, 1994
자극감응성 고분자막의 제조와 약물투과특성 :Ⅳ. UV조사법에 의한 폴리아미드막의 기능화와 리보플라빈의 투과특성
Preparation of Stimuli-Responsive Polymeric Membranes and Their Permeation Characteristics of Drugs : Ⅳ. Functionalization of Polyamide Membranes Prepared by UV Irradiation Method and Their Riboflavin Permeation
초록
폴리아미드 다공성막표면에 자외선을 조사하여 아크릴산과 메타크릴산 _그리고 N-isopropylacylamide(NIPAm)를 그라프트중합하여 pH와 온도변화 및 그라프트 밀도변화에 따른 리보플라빈의 투과도 변화를 고찰하였다. 아크릴산이 그라프트된 막은 pH 4∼5의 범위에서, 메타크릴산이 그라프트된 막은 pH 6∼7의 범위에서 급격한 투과도 감소를 나타내었다. pH 7과 pH 4에서의 투과도의 비는 큰 경우가 1.3 정도였다. NIPAm이 그라프트되면 lower critical solution temperature(LCST)로 인해 약 31∼33℃부근에서 급격한 투과도 증가가 나타났다. 아크릴아미드가 NIPAm과 공중합되면 LCST 전이온도가 40∼50℃로 높아졌다. 기능성 단량체들의 개시방법들에 따른 투과도 및 pH변화를 살펴보았다.
Acrylic acid, methacrylic acid and N-isopropylacrylamide(NIPAm) were grafted onto the porous polyamide membrane using ultraviolet irradiation method. The riboflavin permeation behaviors through the prepared graft membranes were investigated as a function of the change in pH, temperature and the graft density. Acrylic aicd graft membrane showed a rapid decrease in permeability at pH range between 4 and 5, while methacrylic acid graft membrane showed the pH sensitivity in pH 6∼7. The largest ratio of permeability at pH 7 and 4 is about 1.3 for UA-1 and UM-1 membranes. As NIPAm is grafted onto the polyamide membrane, the permeability increased rapidly at 31 ∼33℃ due to the lower critical solution temperature(LCST). As acrylamide is copolymerized with NIPAm, LCST increased to 40∼50℃. We also compared the permeabilities and the pH sensitivities of membranes prepared from the different initiation methods as reported earlier.
  1. Zattaroni A, Chemtech., 757 (1980)
  2. Zattaroni A, Chemtech., 82 (1976)
  3. Creque H, Langer R, Folkman J, Diabetes, 35, 684 (1986)
  4. Langer R, Folkman J, Nature, 263, 797 (1976) 
  5. Okahata Y, Seki T, Macromolecules, 17, 1880 (1984) 
  6. Okahata Y, Noguchi H, Seki T, Macromolecules, 20, 15 (1987) 
  7. Kitano H, Akatsuka Y, Ise N, Macromolecules, 24, 42 (1991) 
  8. Seigel RA, Falamarzian M, Firestone BA, Moxley BC, J. Control. Release, 8, 179 (1988) 
  9. Hoffman S, Dong L, J. Control. Release, 15, 141 (1991) 
  10. Klumb LA, Horbett TA, J. Control. Release, 18, 59 (1992) 
  11. Kim JH, Kim JY, Lee YM, Kim KY, J. Appl. Polym. Sci., 44, 1823 (1992) 
  12. Chung DJ, Ito Y, Imanishi Y, J. Control. Release, 18, 45 (1992) 
  13. Okahata Y, Lim HJ, Nakamura G, Hachiya S, J. Am. Chem. Soc., 105, 4855 (1983) 
  14. Okano T, Bae YH, Jacobs H, Kim SW, J. Control. Release, 11, 255 (1990) 
  15. Okano T, Bae YH, Kim SW, Pharm. Res., 8, 624 (1991) 
  16. Ito Y, Kotera S, Ibana M, Kono K, Imanishi Y, Polymer, 31, 2157 (1990) 
  17. Iwata H, Matsuda T, J. Membr. Sci., 38, 185 (1988) 
  18. Osada Y, Honda K, Ohta M, J. Membr. Sci., 27, 327 (1986) 
  19. Kim JH, Lee YM, Jung CN, J. Korean Ind. Eng. Chem., 3(2), 296 (1992)
  20. Ihm SY, Lee YM, Kim JH, Cho CS, Sung YK, Polym.(Korea), 18(3), 391 (1994)
  21. Ihm SY, Lee YM, Kim JH, Kang DM, Cho CS, Sung YK, Polym.(Korea), 18(3), 399 (1994)
  22. Mueller KF, Polymer, 33(16), 3470 (1992) 
  23. Gehrke SH, Palasis M, Akhtar MK, Polym. Int., 29, 29 (1992)