Fluid Phase Equilibria, Vol.258, No.1, 83-94, 2007
Modeling phase equilibria of alkanols with the simplified PC-SAFT equation of state and generalized pure compound parameters
The simplified PC-SAFT equation of state has been applied to liquid-liquid, vapor-liquid and solid-liquid equilibria for mixtures containing 1-or 2-alkanols with alkanes, aromatic hydrocarbons, CO2 and water. For the alkanols we use generalized pure compound parameters. This means that two of the physical pure compound parameters, in (segment number) and or (segment diameter), are obtained from linear extrapolations, since m and m sigma(3), increase linearly with respect to the molar mass, and moreover, the two association parameters (association energy and association volume) were assumed to be constant for all alkanols. Only the dispersion energy is fitted to experimental data. Thus it is possible to estimate parameters for several 1-and 2-alkanols. The final aim is to develop a group contribution approach for PC-SAFT which is suitable for complex compounds, considering that the motivation of this project is to obtain a thermodynamic model which can be used in the development of sophisticated products such as pharmaceuticals, polymers, detergents or food ingredients. One of the severe limitations in applying SAFT-type equations of state to these compounds is that the procedure for obtaining the pure compound parameters is usually based on fitting to saturated vapor pressure and liquid density data over an extended temperature range. However, such data are rarely available for complex compounds. To verify the new pure compound parameters, comparisons to ordinary optimized alkanol parameters, where all five pure compound parameters were fitted to experimental liquid density and vapor pressure data, were made. The results show that the new generalized alkanol parameters from this work perform at least as well as other alkanol parameter sets. (c) 2007 Elsevier B.V. All rights reserved.
Keywords:alkanols;simplified PC-SAFT;vapor-liquid equilibria;liquid-liquid equilibria;solid-liquid equilibria