화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.46, No.14, 4764-4771, 2007
Kinetic modeling of the adsorption of basic dyes onto steam-activated bituminous coal
The principal aim of this work is to investigate the mechanism of basic dye (methylene blue (MB) and basic red (BR)) adsorption onto activated carbons produced from steam-activated bituminous coal. The rate of adsorption onto various activated carbons, produced in small laboratory-scale and pilot-industrial-scale processes, was investigated under a variety of conditions. The kinetic data from these investigations were correlated to a number of adsorption models in an attempt to elucidate the mechanism of the adsorption processes. The adsorption mechanism was found to follow pseudo-second-order and intraparticle-diffusion models, with external mass transfer predominating in the first 5 min of the experiment. Filtrasorb 400 (Chemviron Carbon) exhibited the highest adsorption rate for the removal of basic dyes followed by activated carbons produced by our research group: PAC1 (activated carbon produced from Venezuelan bituminous coal in small laboratory scale using physical activation technique) and PAC2 (activated carbon produced by the steam activation of New Zealand bituminous coal on a pilot-industrial scale).