화학공학소재연구정보센터
Inorganic Chemistry, Vol.46, No.16, 6212-6214, 2007
Precise size control and synchronized synthesis of six colors of CdSe quantum dots in a slow-increasing temperature gradient
The present study describes a simultaneous and highly reproducible large-scale synthesis of six (and more) colors of size-homogeneous and highly luminescent CdSe quantum dots in a single reaction, controlled by a slow-increasing temperature gradient. The described protocol allows a precise control and a synchronized isolation of aliquots of CdSe nanocrystals with defined sizes, avoiding disturbance of the growth of nanocrystals (existing in the reaction mixture) to the isolation of the next aliquot. The obtained quantum dot fractions are of high quality (in 95% size-homogeneous) and have sharp photoluminescence spectra (fwhm similar to 30 nm), quantum yields of 45-70% (in organic solvent), and a lack of aggregation in organic solvents. The method is environmentally friendly as it ensures almost complete utilization of the precursors and productive yield similar to 95%.