화학공학소재연구정보센터
Inorganic Chemistry, Vol.46, No.16, 6395-6404, 2007
Topological metastability and oxide ionic conduction in La2-xEuxMo2O9
The effect of partial substitution, up to x = 0.4, of La by trivalent Eu on the phase stability, thermal expansion, and transport properties of La2Mo2O9 are investigated using temperature-controlled X-ray powder diffraction, differential thermal analysis, and complex impedance spectroscopy. At low europium content (x <= 0.1), the alpha-beta phase transition is observed at a temperature dependent on the sample shaping (powder, pellet, etc.). At high europium content (x >= 0.25), the samples remain cubic (beta phase), regardless of the shaping. In the intermediate range of europium content (x = 0.15, 0.2), the phase stability is highly sensitive to the thermal history and the sample shaping, with a double-reversed beta-alpha-beta transition suppressed by the shaping/sintering process. The influence of the amount of europium on the transport mechanisms and parameters is studied in both low- (Arrhenius) and high-temperature (Vogel-Tammann-Fulcher = VTF) regimes. If the effect of substitution is rather mild and monotonous within each transport regime and crystallographic phase, an abrupt change in the Arrhenius parameters between the alpha- and beta-type phases is observed.