화학공학소재연구정보센터
Inorganic Chemistry, Vol.46, No.16, 6483-6494, 2007
Platinum acetylide two-photon chromophores
To explore the photophysics of platinum acetylide chromophores with strong two-photon absorption cross-sections, we have investigated the synthesis and spectroscopic characterization of a series of platinum acetylide complexes that feature highly pi-conjugated ligands substituted with pi-donor or -acceptor moieties. The molecules (numbered 1-4) considered in the present work are analogs of bis(phenylethynyl)bis(tributylphosphine)platinum(II) complexes. Molecule 1 carries two alkynyl-benzothiazolylfluorene ligands, and molecule 2 has two alkynyl-diphenylaminofluorene ligands bound to the central platinum atom. Compounds 3 and 4 possess two dihexylaminophenyl substituents at their ends and differ by the number of platinum atoms in the oligomer "core" (one vs two in 3 and 4, respectively). The ligands have strong effective two-photon absorption cross-sections, while the heavy metal platinum centers give rise to efficient intersystem crossing to long-lived triplet states. Ultrafast transient absorption and emission spectra demonstrate that one-photon excitation of the chromophores produces an S-1 state delocalized across the two conjugated ligands, with weak (excitonic) coupling through the platinum centers. Intersystem crossing occurs rapidly (k(isc) approximate to 10(11) s(-1)) to produce the T-1 state, which is possibly localized on a single conjugated fluorenyl ligand. The triplet state is strongly absorbing (epsilon(TT) > 5 x 10(4) M-1 cm(-1)), and it is very long-lived (tau > 100 mu s). Femtosecond pulses were used to characterize the two-photon absorption properties of the complexes, and all of the chromophores are relatively efficient two-photon absorbers in the visible and near-infrared region of the spectrum (600-800 nm). The complexes exhibit maximum two-photon absorption at a shorter wavelength than 2 lambda for the one-photon band, consistent with the dominant two-photon transition arising from a two-photon-allowed gerade-gerade transition. Nanosecond transient absorption experiments carried out on several of the complexes with excitation at 803 nm confirm that the long-lived triplet state can be produced efficiently via a sequence involving two-photon excitation to produce S-1, followed by intersystem crossing to produce T-1.