화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.106, No.1, 60-70, 2007
Formation of the first injectable poly(vinyl alcohol) hydrogel by mixing of functional PVA precursors
In this study we describe the development of an injectable, in situ chemical hydrogel forming system. The gelation occurs under neutral pH and at room temperature immediately upon mixing of the two aqueous poly (vinyl alcohol) components specifically derivatized through carbamate linkages with aldehyde (PVA-AL) and hydrazide (PVA-HY) functional groups, respectively. Aldehyde and hydrazide pendant groups were incorporated with a low degree of substitution (DS) into the PVA backbone to keep PVA structural homogeneity minimally altered. As a result, the hydrazone crosslinks are formed rapidly between aldehyde and hydrazide pendant groups when the correspondingly modified PVA components are brought in contact as water solutions. To assess in situ hydrazone crosslinks formation for in vitro cytocompatibility, murine neuroblastoma N2a cells were suspended in cell culture medium with the dissolved PVA-HY prior to addition to the PVA-AL aqueous solution. Thus, the cells were chemically encapsulated in a polymer network that was formed by mixing of the corresponding aqueous solutions of PVA functional precursors. Biochemical analysis revealed that cells survived chemical crosslinking and remained viable in the hydrogel for 4 days of culture. (c) 2007 Wiley Periodicals, Inc.