Journal of Colloid and Interface Science, Vol.312, No.2, 513-521, 2007
Controlled synthesis of alpha-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties
Uniform alpha-Fe2O3 nanorods with diameter of about 30 nm and length up to 500 nm were synthesized by a template-free hydrothermal method and a following calcination of the intermediate product in the air at 500 degrees C for 2 It. By carefully tuning the concentration of the reactants, a series of alpha-Fe2O3 nanorods with gradient in aspect ratios can be obtained. The effect of the solvent was also evaluated. Based on the experimental facts, the formation mechanism of this one-dimensional structure was proposed. The size-dependent properties of the as-obtained alpha-Fe2O3 nanorods were investigated. The optical absorption properties of the samples showed that the band gaps of the samples decreased in the sequence in which the size increased. The electrochemical performance of the samples showed that the discharge capacity decreased as the size of the sample increased, which may result from the high surface area and small size. The magnetic hysteresis measurements taken at 5 K showed that the coercivities of the samples were related to the aspect ratios of the samples, which may result from the larger shape anisotropy. However, the temperature-dependent field cooling magnetization showed that there was no Morin transition in the as-prepared samples, which may result from the surface effect. (c) 2007 Elsevier Inc. All rights reserved.