화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.313, No.2, 551-562, 2007
Preparation, characterization, and Zn2+ adsorption behavior of chemically modified MCM-41 with 5-mercapto-1-methyltetrazole
A mesoporous silica (MCM-41) has been chemically modified with 5-mercapto-1-methyltetrazole using the homogeneous route. This synthetic route involved the reaction of 5-mercapto-1-methyltetrazole with 3-chloropropyltriethoxysilane prior to immobilization on the support. The resulting material (MTTZ-MCM-41) has been characterized by powder X-ray diffraction, nitrogen gas sorption, FT IR and MAS NMR spectroscopy, thermogravimetry, and elemental analysis. The solid was employed as a Zn(II) adsorbent from aqueous solutions at room temperature. The effect of several variables (stirring time, pH, metal concentration, addition of ethanol, presence of other metals in the medium) has been studied using batch and column techniques. Flame atomic absorption spectrometry was used to determine the Zn(II) concentration in the filtrate or in the eluted solution after the adsorption process. Results obtained indicate that under the optimum conditions (pH 8 and 2 h stirring time), the maximum adsorption value for Zn(II) was 1.59 +/- 0.01 mmol/g, whereas the adsorption capacity of the unmodified mesoporous silica was about 0.010 +/- 0.001 mmol/g. On the other hand, the Zn(II) adsorption on the MTTZ-MCM-41 was independent of the presence of ethanol and other metals (Cu(II), Mn(II), Ca(II), and Mg(II)) in the medium. Finally, experiments carried out in order to study the regeneration capacity of the MTTZ-MCM-41 revealed that the adsorption capacity of this material was maintained after 3 cycles of the adsorption/desorption process. (c) 2007 Elsevier Inc. All rights reserved.