Polymer(Korea), Vol.18, No.5, 783-792, September, 1994
Carbon Fiber/Isotactic Polypropylene의 Single Fiber Composites(SFC) 시험법을 이용한, 합성된 Graft Copolymer Coupling Agent의 계면전단강도 증가에 관한 연구
Improvement of Interfacial Shear Strength in Single Carbon Fiber Reinforced Isotactic Polypropylene Composites Using Graft Copolymer As a Coupling Agent
초록
Carbon flber/isotactic polypropylene (IPP) 복합재료에서 coupling agent로 합성된 graft copolymer의 효과를 single fiber composite (SFC) 시편을 사용하여 계면선단강도를 측정하여 조사하였다. coupling agents용으로, backbone인 isotactic polypropylene에 polyacrylamide (PAAm)를 graft시킨 graft copolymer를 합성하여, coupling agent의 표면처리와 SFC 시편 제조에 대한 최적조건들을 표준화하였다. 계면전단강도가 상온에서는 약 18% 정도의 증가를 보였으며, 끓는 물에 1시간 정도 담근 후에는 약 60% 정도의 증가를 보였다. 이는 탄소섬유의 표면 관능기와 coupling agent내의 PAAm간의 계면에서의 화학적인 결합과, coupling agent의 backbone인 IPP와 matrix인 IPP와의 계면에서의 동종 수지간의 상호 침투를 통한 inter-diffusion에 의한 결합력 증가에 기인할 것이다. 또한, 구정 크기와 transcrystallinty도 SFC 시편의 IFSS에 밀접하게 상호 관련되어 있다고 생각 된다.
The effect of synthesized graft copolymer as a coupling agent in carbon fiber/isotactic polypropylene (iPP) systems were investigated through measurement of the interfacial shear strength (IFSS) using single fiber composite (SFC) specimens. A graft copolymer with isotactic polypropylene backbone grafted with polyacrylamide was synthesized as a coupling agent. Optimal conditions for the coupling agent treatment and SFC specimens preparation were standardized. Improvement in IFSS showed about 18% under room temperature condition, whereas improvement showed more than 60% under wet conditions, after 1 hour boiling in water. It was because of chemical bonding in the interface between functional groups in carbon fiber surfaces and PAAm in coupling agent, and inter-diffusion in another interface between iPP in coupling agents and matrix IPP, respectively. In addition, spherulite size and transcrystallinity seem to be correlated to intimately to IFSS of SFC specimens.
Keywords:single fiber composites (SFC);Interfacial shear strength;durability;graft copolymer;coupling agent
- Harper RC, SAMPE J., 28(2), 9 (1992)
- Schadler LS, Laird C, Figueroa JC, J. Mater. Sci., 27, 4024 (1992)
- Ma CCM, Lee CL, Chang MJ, Tai NH, Polym. Compos., 13(6), 448 (1992)
- Deporter JK, Baird DG, Wilkes GI, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C33(1), 1 (1993)
- Park JM, Subramanian RV, J. Adhes. Sci. Technol., 5(6), 459 (1991)
- Park JM, Subramanian RV, Bayoumi AE, J. Adhes. Sci. Technol., 8(2), 133 (1994)
- Kobayashi T, Takahashi S, Fujii N, J. Appl. Polym. Sci., 49, 417 (1993)
- Sandi AR, Piggott MR, J. Mater. Sci., 20, 431 (1985)
- Bascom WD, Proceedings of the 6th International Conf. of Composite Materials (ICCM), 5, 424 (1987)
- Netravali AN, Henstenburg RB, Phoenix SL, Schwartz P, Polym. Compos., 10, 226 (1989)
- Narkis M, Chen JH, Polym. Compos., 9(4), 245 (1988)
- Kelly A, Tyson NR, J. Mech. Phys. Solids, 13, 329 (1965)
- Moon CK, Um YS, Cho HH, Yoon JS, Lee JO, Park TW, Polym.(Korea), 16(5), 511 (1992)
- Subramanian RV, Crasto AS, Polym. Compos., 7, 201 (1986)
- Crasto AS, Own SH, Subramanian RV, Polym. Compos., 9, 78 (1988)
- Chiang CH, Ishida H, Koening JL, J. Colloid Interface Sci., 74, 396 (1980)