화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.30, 8928-8939, 2007
Interplay of intrinsic, environmental, and dynamic effects in tuning the EPR parameters of nitroxides: Further insights from an integrated computational approach
The role of stereoelectronic, environmental, and short-time dynamic effects in tuning the hyperfine and gyromagnetic tensors of a prototypical nitroxide spin probe has been investigated by an integrated computational approach based on extended Lagrangian molecular dynamics and discrete-continuum solvent models. Trajectories were generated in two protic solvents as well as in the gas phase for reference; structural analysis of the dynamics, and comparison with optimized solute-solvent clusters, allowed for the identification of the prevailing solute-solvent hydrogen-bonding patterns and helped to define the strategy for the computation of magnetic parameters. This was performed in a separate step, on a large number of frames, by a high-level DFT approach coupling the PBE0 hybrid functional with a tailored basis set and with proper account of specific and bulk solvent effects. Remarkable changes in solvation networks are found on going from aqueous to methanol solution, thus providing a rationalization of indirect experimentally available evidence. The computed magnetic parameters are in satisfactory agreement with the available measured values and allow for an unbiased evaluation of the role of different effects in tuning the overall EPR observables. Apart from their intrinsic interest, our results pave the route toward the development of tunable detection protocols based on specific spectroscopic signatures.