화학공학소재연구정보센터
Polymer(Korea), Vol.18, No.5, 826-834, September, 1994
스티렌계 공중합체 및 개질 SMA의 기체투과 특성
Gas Transport Properties of Styrenic Copolymers and Modified SMAs
초록
아크릴로니트릴 또는 무수말레인산을 함유하는 스티렌계 공중합체와 이들을 개질시켜 얻은 공중합체의 열적 특성 및 기체투과 특성을 조사하고 비교하였다. 이때 개질 공중합체는 SMA8(styrene-co-maleic anhydride)를 몇가지 아민들과 반응시켜 MA(maleic anhydride) 측쇄(side chain)부분을 이미드화하여 얻었으며, 35℃, 1내지 2 기압하에서 헬륨, 산소, 질소, 알곤 및 탄산가스를 사용하여 조사한 결과 투과 특성은 민감하게 변화하였다 이러한 결과들은 개질 전후의 공중합체의 자유부피 변화율과 거의 직선적인 상관관계를 나타내었으므로, 고분사의 주쇄변환 뿐만 아니라 부분적인 측쇄변환에 의해서도 기체투과특성을 민감하게 조절할 수 있음을 알았다.
Thc gas transport properties and thermal properties of styrenic copolymers containing acrylonitrile or maleic anhydride, and modified SMA copolymers have been examined. Modified copolymers were prepared from reaction with the SMA8 and various amines. Permeability coefficients were measured at 35℃ under 1 to 2 atmosphere for He, O2, N2, Ar and CO2. It was founded that gas transport properties are controlled sensitively by not only manipulation of the main chain but also manipulation of the side chain. The experimental results showed that a linear relationship between inverse of specific free volume and permeability coefficients of these glassy polymers.
  1. Paul DR, Morel G, Grayson M, Kirk-Othmer Encyclopedia of Chemical Technology, 3rd. ed., Vol. 15, Wiley-Interscience, New York (1981)
  2. Cabasso I, Mark HF, "Encyclopedia of Polymer Science and Engineering," 2nd ed., Vol. 9, Wiley-Interscience, New York (1987)
  3. Muruganandam N, Paul DR, J. Polym. Sci. B: Polym. Phys., 25, 1999 (1987) 
  4. O'Brien KC, Koros WJ, J. Membr. Sci., 35, 217 (1988) 
  5. Lee CL, Chapman HL, Cifuentes ME, Lee KM, Merrill LD, Ulman KL, J. Membr. Sci., 38, 55 (1988) 
  6. Chiou JS, Paul DR, J. Polym. Sci. B: Polym. Phys., 25, 1699 (1987) 
  7. Yamamoto H, Mi Y, Stern SA, J. Polym. Sci. B: Polym. Phys., 28, 2291 (1990) 
  8. Puleo AC, Muruganandam N, Paul DR, J. Polym. Sci. B: Polym. Phys., 27, 2385 (1989) 
  9. Paul DR, J. Membr. Sci., 18, 75 (1984) 
  10. Min KE, Paul DR, J. Polym. Sci. B: Polym. Phys., 26, 1021 (1988) 
  11. Reimers MJ, Cibulsky MJ, Barbari TA, J. Polym. Sci. B: Polym. Phys., 31, 537 (1993) 
  12. Stuk LGF, J. Polym. Sci. B: Polym. Phys., 28, 127 (1990) 
  13. Jordan SM, Koros WJ, J. Polym. Sci. B: Polym. Phys., 28, 2305 (1990) 
  14. Lee WM, Polym. Eng. Sci., 20, 65 (1980) 
  15. Matsumoto A, Oki Y, Otsu T, Polym. J., 23, 201 (1991) 
  16. Tanaka K, Kita H, Okamoto KI, Nakamura A, Kusuki Y, Polym. J., 22, 381 (1990) 
  17. Okamoto KI, Tanaka K, Kita H, Ishida M, Kakimoto M, Imai Y, Polym. J., 24, 451 (1992) 
  18. Tanaka K, Kita H, Okano M, Okamoto KI, Polymer, 33, 585 (1992) 
  19. Moore ER, Pickelman DM, Ind. Eng. Chem. Prod. Res. Dev., 25, 603 (1986) 
  20. Yang CP, Wang SS, J. Polym. Sci. A: Polym. Chem., 27, 15 (1989) 
  21. Min KE, Seo WY, Polym.(Korea), 16(4), 443 (1992)
  22. Ahn JA, Seo WY, Kwon OJ, Min KE, Polym.(Korea), 18(2), 269 (1994)
  23. Levy GC, Lichter RL, Nelson GL, "Carbon-13 Nuclear Magnetic Resonance Spectroscopy," Wiley-Interscience, New York (1980)
  24. Bondi A, "Physical Properties of Molecular Crystals, Liquids, and Glasses," Wiley Interscience, New York (1968)
  25. Crank J, Park GS, "Diffusion in Polymers," Academic Press, Inc., New York (1968)