화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.38, 11095-11104, 2007
Assembly of lipids and proteins into lipoprotein particles
The self-assembly of reconstituted discoidal high-density lipoproteins, known as nanodiscs, was studied using coarse-grained molecular dynamics and small-angle X-ray scattering. In humans, high-density lipoprotein particles transport cholesterol in the blood and facilitate the removal of excess cholesterol from the body. Native high-density lipoprotein exhibits a wide variety of shapes and sizes, forming lipid-free/poor, nascent discoidal, and mature spherical particles. Little is known about how these lipoprotein particles assemble and transform from one state to another. Multiple 10 mu s coarse-grained simulations reveal the assembly of discoidal high-density lipoprotein particles from disordered protein-lipid complexes. Small-angle X-ray scattering patterns were calculated from the final assembled structures and compared with experimental measurements carried out for this study to verify the accuracy of the coarse-grained simulations. Results show that hydrophobic interactions assemble, within several microseconds, the amphipathic helical proteins and lipids into roughly discoidal particles, while the proteins assume a final approximate double-belt configuration on a slower time scale.